
MATLAB® Compiler SDK™
MATLAB® Code Deployment Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Code Deployment Guide
© COPYRIGHT 2012–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)

Overview
1

How Does MATLAB Deploy Functions? 1-2

MEX-Files, DLLs, or Shared Libraries . 1-3

Dependency Analysis . 1-4
Function Dependency . 1-4
Data File Dependency . 1-4

Deployable Archive . 1-6
Additional Details . 1-8

Write Deployable MATLAB Code
2

Write Deployable MATLAB Code . 2-2
Packaged Applications Require Functions 2-2
Packaged Applications Do Not Process MATLAB Files at Run

Time . 2-2
Do Not Rely on Changing Directory or Path to Control the

Execution of MATLAB Files . 2-3
Use isdeployed Functions To Execute Deployment-Specific Code

Paths . 2-3
Gradually Refactor Applications That Depend on Noncompilable

Functions . 2-4
Do Not Create or Use Nonconstant Static State Variables 2-4
Get Proper Licenses for Toolbox Functionality You Want to

Deploy . 2-5

v

Contents

State-Dependent Functions . 2-6
Does My MATLAB Function Carry State? 2-6
Defensive Coding Practices . 2-6
Techniques for Preserving State . 2-7

Calling Shared Libraries in Deployed Applications 2-9

MATLAB Data Files in Compiled Applications 2-11
Explicitly Including MATLAB Data files Using the %#function

Pragma . 2-11
Load and Save Functions . 2-11

Share MATLAB Runtime Instances . 2-15
What Is a Singleton MATLAB Runtime? 2-15
Advantages and Disadvantages of Using a Singleton 2-15

Package a C/C++ Shared Library
3

Install an ANSI C or C++ Compiler . 3-2
Supported ANSI C and C++ Windows Compilers 3-2
Supported ANSI C and C++ UNIX Compilers 3-2
Common Installation Issues and Parameters 3-3

Create a C Shared Library with MATLAB Code 3-4
Create Functions in MATLAB . 3-4
Create a C Shared Library Using the Library Compiler App . . 3-5
Customize the Application and Its Appearance 3-6
Package the Application . 3-7

Create C/C++ Shared Libraries from Command Line 3-9
Execute Compiler Projects with deploytool 3-9
Package a Shared Library with mcc . 3-9
Differences Between Compiler Apps and Command Line 3-10

Distribute C/C++ Shared Libraries to Application Developers
. 3-12

vi Contents

Package a .NET Assembly
4

Generate a .NET Assembly and Build a .NET Application 4-2
Create Function in MATLAB . 4-2
Create .NET Assembly Using Library Compiler App 4-2
Specify Assembly File Settings . 4-4
Customize the Application and Its Appearance 4-4
Package the Application . 4-7
Build a .NET Application . 4-7

Package .NET Assemblies from Command Line 4-9
Execute Compiler Projects with deploytool 4-9
Create .NET Assemblies with mcc . 4-9
Differences Between Compiler Apps and Command Line 4-11

Distribute .NET Assemblies to Application Developers 4-12

Package a Java Application
5

Configure Your Java Environment . 5-2
Install the Required JDK . 5-2
Set JAVA_HOME . 5-3
Set the CLASSPATH . 5-3
Configure the Native Library Path Variables 5-3

Generate a Java Package and Build a Java Application 5-5
Create Function in MATLAB . 5-5
Create Java Application Using Library Compiler App 5-5
Specify Package Settings . 5-6
Customize the Application and Its Appearance 5-7
Package the Application . 5-9
Install and Implement MATLAB Generated Java Application . . 5-9

Package Java Applications from Command Line 5-11
Execute Compiler Projects with deploytool 5-11
Package a Java Application with mcc 5-11
Differences Between Compiler Apps and Command Line 5-12

vii

Map Functions to Java Class Methods 5-14
Map Functions to Java Classes with the Library Compiler App

. 5-14
Map Functions to Java Classes with mcc 5-15

Distribute Java Applications to Application Developers 5-17

Package a Python Application
6

Generate a Python Package and Build a Python Application
. 6-2

Create Function in MATLAB . 6-2
Create Python Application Using Library Compiler App 6-2
Specify Package Settings . 6-4
Customize the Application and Its Appearance 6-4
Package the Application . 6-5
Install and Run MATLAB Generated Python Application 6-6

Package Python Applications from Command Line 6-8
Execute Compiler Projects with deploytool 6-8
Package a Python Application with mcc 6-8
Differences Between Compiler Apps and Command Line 6-9

Distribute Python Applications to Application Developers . . 6-10

Compile a Deployable Archive for MATLAB Production
Server

7
Package Deployable Archives with Production Server Compiler

App . 7-2
Create Function In MATLAB . 7-2
Create Deployable Archive with Production Server Compiler

App . 7-2
Customize the Application and Its Appearance 7-3
Package the Application . 7-4

viii Contents

Package Deployable Archives from Command Line 7-6
Execute Compiler Projects with deploytool 7-6
Package a Deployable Archive with mcc 7-6
Differences Between Compiler Apps and Command Line 7-7

Build Excel Add-In and Deployable Archive 7-8

Package a COM Component
8

Create a Generic COM Component with MATLAB Code 8-2
Create Function in MATLAB . 8-2
Create Generic COM Component Using Library Compiler App

. 8-2
Customize the Application and Its Appearance 8-3
Package the Application . 8-5

Package COM Components from Command Line 8-7
Execute Compiler Projects with deploytool 8-7
Create COM Component with mcc . 8-7
. 8-11

Distribute COM Components to Application Developers 8-12

Customizing a Compiler Project
9

Customize an Application . 9-2
Customize the Installer . 9-2
Manage Required Files in Compiler Project 9-5
Sample Driver File Creation . 9-5
Specify Files to Install with Application 9-7
Additional Runtime Settings . 9-8
API Selection for C++ Shared Library 9-9

Manage Support Packages . 9-11
Using a Compiler App . 9-11

ix

Using the Command Line . 9-12

Advanced Uses of the Command Line Compiler
10

Simplify Compilation Using Macros . 10-2
Macros . 10-2
Working With Macros . 10-2

Invoke MATLAB Build Options . 10-4
Specify Full Path Names to Build MATLAB Code 10-4
Using Bundles to Build MATLAB Code 10-5

MATLAB Runtime Component Cache and Deployable Archive
Embedding . 10-7

Overriding Default Behavior . 10-8
For More Information . 10-8

Work with the MATLAB Runtime
11

MATLAB Runtime Startup Options . 11-2
Retrieve MATLAB Runtime Startup Options 11-2

Using the MATLAB Runtime User Data Interface 11-5
MATLAB Functions . 11-5
Set and Retrieve MATLAB Runtime Data for Shared Libraries

. 11-6

Display the MATLAB Runtime Initialization Messages 11-7
Best Practices . 11-8

x Contents

Limitations and Restrictions
12

Limitations . 12-2
Packaging MATLAB and Toolboxes . 12-2
Fixing Callback Problems: Missing Functions 12-2
Finding Missing Functions in a MATLAB File 12-4
Suppressing Warnings on the UNIX System 12-5
Cannot Use Graphics with the -nojvm Option 12-5
Cannot Create the Output File . 12-5
No MATLAB File Help for Packaged Functions 12-5
No MATLAB Runtime Versioning on Mac OS X 12-6
Older Neural Networks Not Deployable with MATLAB Compiler

. 12-6
Restrictions on Calling PRINTDLG with Multiple Arguments in

Packaged Mode . 12-6
Packaging a Function with which Does Not Search Current

Working Folder . 12-7
Restrictions on Using C++ SETDATA to Dynamically Resize an

mwArray . 12-7

Functions not supported by MATLAB Compiler / MATLAB
Compiler SDK . 12-9

Functions
13

Apps
14

xi

Overview

• “How Does MATLAB Deploy Functions?” on page 1-2
• “MEX-Files, DLLs, or Shared Libraries” on page 1-3
• “Dependency Analysis” on page 1-4
• “Deployable Archive” on page 1-6

1

How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies
affect deployability and originate from functions called by the file. Deployability is
affected by:

• File type — MATLAB, Java®, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis, see
“Dependency Analysis” on page 1-4.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared
Libraries” on page 1-3.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives see “Deployable Archive” on page 1-6.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies,
the compiler invokes the required third-party compiler.

1 Overview

1-2

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency
analyzer can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to
determine their dependencies, explicitly include all executable files these files require.
To do so, use either the mcc -a option or the Files required for your application to
run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function
called by a MEX-file, DLL, or shared library, then manually include that function. To do
so, use either the mcc -a option or the Files required for your application to run
field in the compiler app.

• Not all functions are compatible with the compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all functions called
from your application that you cannot deploy.

 MEX-Files, DLLs, or Shared Libraries

1-3

Dependency Analysis
In this section...
“Function Dependency” on page 1-4
“Data File Dependency” on page 1-4

MATLAB Compiler™ uses a dependency analysis function to determine the list of
necessary files to include in the generated package. Sometimes, this process generates a
large list of files, particularly when MATLAB object classes exist in the compilation and
the dependency analyzer cannot resolve overloaded methods at package time.
Dependency analysis also processes include/exclude files on each pass.

Tip To improve package time performance and lessen application size, prune the path
with the mcc command’s -N and -p flags. You can also specify Files required for your
application in the compiler app.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency
analysis cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and
automatically include files that your MATLAB functions access by calling any of these
functions: audioinfo, audioread, csvread, daqread, dlmread, fileread, fopen,
imfinfo, importdata, imread, load, matfile, mmfileinfo, open, readtable,
type, VideoReader, xlsfinfo, xlsread, xmlread, and xslt.

1 Overview

1-4

If you are using the compiler app, these data files are automatically added to the Files
required for your application to run area of the app.

See Also
applicationCompiler | mcc

More About
• Application Compiler

 See Also

1-5

Deployable Archive
Each application or shared library you produce using the compiler has an embedded
deployable archive. The archive contains all the MATLAB based content (MATLAB files,
MEX-files, and so on). All MATLAB files in the deployable archive are encrypted using the
Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain
encrypted. For more information on how to extract the deployable archive refer to the
references in the following table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding”
MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding”
MATLAB Compiler SDK Java integration “Deployable Archive Embedding and

Extraction”
MATLAB Compiler Excel® integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler)

1 Overview

1-6

 Deployable Archive

1-7

Additional Details
Multiple deployable archives, such as those generated with COM components, .NET
assemblies, or Excel add-ins, can coexist in the same user application. You cannot,
however, mix and match the MATLAB files they contain. You cannot combine encrypted
and compressed MATLAB files from multiple deployable archives into another deployable
archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same deployable
archive, do not execute. If you want to generate another application with a different mix
of MATLAB files, recompile these MATLAB files into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed
compilation, but only if these files did not exist before compilation initiates. Run help
mcc -K for more information.

Caution Release Engineers and Software Configuration Managers: Do not use build
procedures or processes that strip shared libraries on deployable archives. If you do, you
can possibly strip the deployable archive from the binary, resulting in run-time errors for
the driver application.

1 Overview

1-8

Write Deployable MATLAB Code

• “Write Deployable MATLAB Code” on page 2-2
• “State-Dependent Functions” on page 2-6
• “Calling Shared Libraries in Deployed Applications” on page 2-9
• “MATLAB Data Files in Compiled Applications” on page 2-11
• “Share MATLAB Runtime Instances” on page 2-15

2

Write Deployable MATLAB Code
In this section...
“Packaged Applications Require Functions” on page 2-2
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 2-2
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files”
on page 2-3
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 2-3
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 2-
4
“Do Not Create or Use Nonconstant Static State Variables” on page 2-4
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 2-5

Packaged Applications Require Functions
Applications implemented with MATLAB Compiler SDK and MATLAB Production Server™
access MATLAB code through APIs generated from MATLAB functions. All MATLAB code
packaged for use in these applications must be written as a MATLAB function.

Packaged Applications Do Not Process MATLAB Files at Run
Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files
are suspended or frozen at the time of compilation. This does not mean that you cannot
deploy a flexible application—it means that you must design your application with
flexibility in mind. If you want the end user to be able to choose between two different
methods, for example, both methods must be available in the deployable archive.

The MATLAB Runtime only works on MATLAB code that was encrypted when the
deployable archive was built. Any function or process that dynamically generates new
MATLAB code will not work against the MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate
MATLAB code dynamically. Because the MATLAB Runtime only executes encrypted
MATLAB files, and the Deep Learning Toolbox generates unencrypted MATLAB files, some
functions in the Deep Learning Toolbox cannot be deployed.

2 Write Deployable MATLAB Code

2-2

Similarly, functions that need to examine the contents of a MATLAB function file cannot
be deployed. HELP, for example, is dynamic and not available in deployed mode. You can
use LOADLIBRARY in deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to
deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run-time processing, your
end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files
In general, good programming practices advise against redirecting a program search
path dynamically within the code. Many developers are prone to this behavior since it
mimics the actions they usually perform on the command line. However, this can lead to
problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot
change. Therefore, any attempt to change these paths (using the cd command or the
addpath command) fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 2-3 for details.

Use isdeployed Functions To Execute Deployment-Specific
Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is
deployable, and which is not. Such specification minimizes your compilation errors and
helps create more efficient, maintainable code.

 Write Deployable MATLAB Code

2-3

For example, you find it unavoidable to use addpath when writing your startup.m.
Using ismcc and isdeployed, you specify when and what is packaged and executed.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable
or non-deployable functions that use isdeployed. Your eventual goal is “graceful
degradation” of non-deployable code. In other words, the code must present the end user
with as few obstacles to deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a
phase of perpetual rewriting, debugging, and optimization. In some toolboxes, such as
the Deep Learning Toolbox product, the code goes through a period of self-training as
it reacts to various data permutations and patterns. Such code is almost never
designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished
state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for
code that calls undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

• Global variables in MATLAB code
• Static variables in MEX-files
• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the
MATLAB Runtime process runs in a single thread. You cannot load more than one of these
non-constant, static variables into the same process. In addition, these static variables do
not work well in multithreaded applications.

2 Write Deployable MATLAB Code

2-4

When programming against packaged MATLAB code, you should be aware that an
instance of the MATLAB Runtime is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to the MATLAB
Runtime created by the previous instance of the same class. In short, if an assembly
contains n unique classes, there will be maximum of n instances of MATLAB Runtime
created, each corresponding to one or more instances of one of the classes.

If you must use static variables, bind them to instances. For example, defining instance
variables in a Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to
Deploy
You must have a valid MathWorks® license for toolboxes you use to create deployable
MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

 See Also

2-5

https://www.mathworks.com/products/compiler/supported/compiler_support.html

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data value in a
program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited to:

• Modifying or relying on the MATLAB path and the Java class path
• Accessing MATLAB state that is inherently persistent or global. Some example of this

include:

• Random number seeds
• Handle Graphics® root objects that retain data
• MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.
• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB

object in any way, it loads into MATLAB.
• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your function to
properly execute, you must take additional steps (listed in this section) to ensure state
retention.

When you deploy your application, consider cases where you carry state, and safeguard
against that state’s corruption if needed. Assume that your state may be changed and
code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application
program to ensure the integrity of your original MATLAB function.

2 Write Deployable MATLAB Code

2-6

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your deployed
application and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your
deployed system and application has access to that cache outside of the MATLAB
environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing state.
Your options for choosing an appropriate state-preserving tool increase as your data types
become less complicated and specific.

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to
interrupt and override the current state of the MATLAB Production Server worker and
may yield unpredictable results in multiuser environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the type of data you
need to save.

• Databases provide the most versatile and scalable means for retaining stateful data.
The database acts as a generic repository and can generally work with any application
in an enterprise development environment. It does not impose requirements or
restrictions on the data structure or layout. Another related technique is to use
comma-delimited files, in applications such as Microsoft® Excel.

• Data that is specific to a third-party programming language, such as Java and C#, can
be retained using a number of techniques. Consult the online documentation for the
appropriate third-party vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state in
MATLAB applications and workspaces. While this may be successful in some

 State-Dependent Functions

2-7

circumstances, it is highly recommended that the data be validated and reset if needed, if
not stored in a generic repository such as a database.

2 Write Deployable MATLAB Code

2-8

Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore,
to create an application that uses the loadlibrary function with a header file, follow
these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the
following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

This creates mylibrarymfile.m in the current folder. If you are on Windows®,
another file named library_thunk_pcwin64.dll is also created in the current
folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the
library’s .dll along with library_thunk_pcwin64.dll, if created, using the -
a option of mcc command. If you are using Application Compiler or Library
Compiler apps, add the .dll files to the Files required for your application to
run section of the app.

• If you are providing the library as an external file that is not integrated with the
deployed application, place the library .dll file in the same folder as the
compiled application. If you are on Windows, you must integrate
library_thunk_pcwin64.dll into your compiled application.

The benefit of this approach is that you can replace the library with an updated
version without recompiling the deployed application. Replacing the library with a
different version works only if the function signatures of the function in the library
are not altered. This is because mylibrarymfile.m and
library_thunk_pcwin64.dll are tied to the function signatures of the
functions in the library.

 Calling Shared Libraries in Deployed Applications

2-9

Note You cannot use loadlibrary inside MATLAB to load a shared library built with
MATLAB. For more information on loadlibrary, see “Limitations to Shared Library
Support” (MATLAB).

Note Operating systems have a loadlibrary function, which loads specified Windows
operating system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call C Functions in Shared Libraries” (MATLAB)

2 Write Deployable MATLAB Code

2-10

MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 2-11
“Load and Save Functions” on page 2-11

Explicitly Including MATLAB Data files Using the %#function
Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by
default. See “Dependency Analysis” on page 1-4.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify
the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use
the %#function pragma within your code to include a dependency on the
gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD
and SAVE functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB
workspace.

• Specify the data file by either using WHICH (to locate its full path name) define it
relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted when
written to the deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 1-6.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and
outside, of MATLAB.

 MATLAB Data Files in Compiled Applications

2-11

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
 '.\userdata\extra_data.mat' -a
 '..\externdata\extern_data.mat'

ex_loadsave.m
function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata\extra_data.mat
% ..\externdata\extern_data.mat
%
% Compile this example with the mcc command:
% mcc -m ex_loadsave.m -a 'user_data.mat' -a
% '.\userdata\extra_data.mat'
% -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the deployable archive file from root of the
% disk drive.
%
% If a data file is outside of the main MATLAB file path,
% the absolute path will be
% included in deployable archive and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into deployable archive and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are
% included in the deployable archive.
%
% The target data file is:
% .\output\saved_data.mat

2 Write Deployable MATLAB Code

2-12

% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file =============================
if isdeployed
 % In deployed mode, all file under CTFRoot in the path are loaded
 % by full path name or relative to $ctfroot.
 % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
 % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
 LOADFILENAME1=which(fullfile('user_data.mat'));
 LOADFILENAME2=which(fullfile('extra_data.mat'));
 % For external data file, full path will be added into deployable archive;
 % you don't need specify the full path to find the file.
 LOADFILENAME3=which(fullfile('extern_data.mat'));
else
 %running the code in MATLAB
 LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','user_data.mat');
 LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','userdata','extra_data.mat');
 LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
 'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))
 mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

 MATLAB Data Files in Compiled Applications

2-13

disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

2 Write Deployable MATLAB Code

2-14

Share MATLAB Runtime Instances
In this section...
“What Is a Singleton MATLAB Runtime?” on page 2-15
“Advantages and Disadvantages of Using a Singleton” on page 2-15

What Is a Singleton MATLAB Runtime?
You create an instance of the MATLAB Runtime that can be shared among all subsequent
class instances within a component. This is commonly called a shared MATLAB Runtime
instance or a Singleton runtime.

Advantages and Disadvantages of Using a Singleton
In most cases, a singleton MATLAB Runtime will provide many more advantages than
disadvantages. Following are examples of when you might and might not create a shared
MATLAB Runtime instance.

When You Should Use a Singleton

If you have multiple users running from a specific instance of MATLAB, using a singleton
will most likely:

• Utilize system memory more efficiently
• Decrease MATLAB Runtime start-up or initialization time

When You Might Avoid Using a Singleton

Using a singleton may not benefit you if your application uses a large number of global
variables. This causes crosstalk.

 Share MATLAB Runtime Instances

2-15

Package a C/C++ Shared Library

• “Install an ANSI C or C++ Compiler” on page 3-2
• “Create a C Shared Library with MATLAB Code” on page 3-4
• “Create C/C++ Shared Libraries from Command Line” on page 3-9
• “Distribute C/C++ Shared Libraries to Application Developers” on page 3-12

3

Install an ANSI C or C++ Compiler
Install supported ANSI® C or C++ compiler on your system. Certain output targets
require particular compilers.

To install your ANSI C or C++ compiler, follow vendor instructions that accompany your
C or C++ compiler.

Note If you encounter problems relating to the installation or use of your ANSI C or C++
compiler, consult your C or C++ compiler vendor.

Supported ANSI C and C++ Windows Compilers
Use one of the following C/C++ compilers that create Windows dynamically linked
libraries (DLLs) or Windows applications:

• Microsoft Visual C++® (MSVC).

• The only compiler that supports the building of COM objects and Excel plug-ins is
Microsoft Visual C++.

• The only compiler that supports the building of .NET objects is Microsoft Visual C#
Compiler for the Microsoft .NET Framework.

• Microsoft Windows SDK 7.1

Note For an up-to-date list of all the compilers supported by MATLAB, see the
MathWorks Technical Support notes at https://www.mathworks.com/support/compilers/
current_release/

Supported ANSI C and C++ UNIX Compilers
MATLAB Compiler and MATLAB Compiler SDK support the native system compilers on:

• Linux®

• Linux x86-64
• Mac OS X

MATLAB Compiler and MATLAB Compiler SDK supports gcc and g++.

3 Package a C/C++ Shared Library

3-2

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

Common Installation Issues and Parameters
When you install your C or C++ compiler, you sometimes encounter requests for
additional parameters. The following tables provide information about common issues
occurring on Windows and UNIX® systems where you sometimes need additional input or
consideration.

Windows Operating System

Issue Comment
Installation options (Recommended) Full installation.
Installing debugger files For the purposes of MATLAB Compiler and

MATLAB Compiler sdk, it is not necessary
to install debugger (DBG) files.

Microsoft Foundation Classes (MFC) Not needed.
16-bit DLLs Not needed.
ActiveX® Not needed.
Running from the command line Make sure that you select all relevant

options for running your compiler from the
command line.

Updating the registry If your installer gives you the option of
updating the registry, perform this update.

Installing Microsoft Visual C++ Version 6.0 To change the install location of the
compiler, change the location of the
Common folder. Do not change the location
of the VC98 folder from its default setting.

UNIX Operating System

Issue Comment
Determine which C or C++ compiler is
available on your system.

See your system administrator.

Determine the path to your C or C++
compiler.

See your system administrator.

Installing on Maci64 Install X code from installation DVD.

 Install an ANSI C or C++ Compiler

3-3

Create a C Shared Library with MATLAB Code
Supported platform: Windows, Linux, Mac

This example shows how to create a C shared library using a MATLAB function. You can
then pass the generated package to the developer who is responsible for integrating it
into an application. The target system does not require a licensed copy of MATLAB.

Create Functions in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
addmatrix.m, multiplymatrix.m, and eigmatrix.m located in matlabroot\extern
\examples\compilersdk\c_cpp\matrix.

addmatrix.m

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4
7; 2 5 8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

multiplymatrix.m

function m = multiplymatrix(a1, a2)

m = a1*a2;

At the MATLAB command prompt, enter multiplymatrix([1 4 7; 2 5 8; 3 6 9],
[1 4 7; 2 5 8; 3 6 9]).

The output is:

 ans =
 30 66 102

3 Package a C/C++ Shared Library

3-4

 36 81 126
 42 96 150

eigmatrix.m

function e = eigmatrix(a1)

 try
 %Tries to calculate the eigenvalues and return them.
 e = eig(a1);
 catch
 %Returns a -1 on error.
 e = -1;
end

At the MATLAB command prompt, enter eigmatrix([1 4 7; 2 5 8; 3 6 9]).

The output is:

 ans =
 16.1168
 -1.1168
 -0.0000

Create a C Shared Library Using the Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Library Compiler. In the MATLAB Compiler
project window, click C Shared Library.

Alternately, you can open the Library Compiler app by entering libraryCompiler
at the MATLAB prompt.

 Create a C Shared Library with MATLAB Code

3-5

2 In the MATLAB Compiler project window, specify the files of the MATLAB
application that you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function is added to the list of exported function files. Repeat this step to
package multiple files in the same application.

Add all three functions to the list of main files.
3 In the Packaging Options section of the toolstrip, decide whether to include the

MATLAB Runtime installer in the generated application by selecting one of the
options:

• Runtime downloaded from web — Generate an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application. You
can specify the filename of the installer.

• Runtime included in package — Generate an application that includes the
MATLAB Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the
MATLAB Runtime installer or obtain a CD if you do not have Internet access.

4 In the Library Name field, rename the packaged shared library as libmatrix. The
same name is followed through in the implementation of the shared library.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information
about the application as follows:

• Library information — Information about the deployed application. You can also
customize the appearance of the application by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Default installation path for the generated installer
and custom logo selection. See “Change the Installation Path”.

3 Package a C/C++ Shared Library

3-6

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.
These files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

Package the Application
1 To generate the packaged application, click Package.

 Create a C Shared Library with MATLAB Code

3-7

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

See Also
deploytool | libraryCompiler | mcc

Related Examples
• “Create C/C++ Shared Libraries from Command Line” on page 3-9
• “Implement a C Shared Library with a Driver Application”

3 Package a C/C++ Shared Library

3-8

Create C/C++ Shared Libraries from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 3-9
“Package a Shared Library with mcc” on page 3-9
“Differences Between Compiler Apps and Command Line” on page 3-10

You can package C/C++ applications at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Package a Shared Library with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the
command prompt and provides fine-level control while packaging the application. It does
not package the results in an installer.

To invoke the compiler to generate a library, use the -l flag with mcc. The -l flag creates
a C/C++ shared library that you can integrate into applications developed in C or C++.

 Create C/C++ Shared Libraries from Command Line

3-9

Use the following mcc options to package a shared library.

Option Description
-W lib:libname -T link:lib Generate a C shared library. Equivalent to

using -l.

The -W lib:<libname> option tells the
compiler to generate a function wrapper for
a shared library and call it libname. The -
T link:lib option specifies the target
output as a shared library. Note the
directory where the product puts the
shared library because you will need it later
on.

-W cpplib:libname -T link:lib Generate a C++ shared library.

The -W lib:<libname> option tells the
compiler to generate a function wrapper for
a shared library and call it libname. The -
T link:lib option specifies the target
output as a shared library. Note the
directory where the product puts the
shared library because you will need it later
on.

-a filePath Add the file or files on the path to the
generated binary.

-d outFolder Specify the folder for the packaged
applications.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

3 Package a C/C++ Shared Library

3-10

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Create a C Shared Library with MATLAB Code”
• “Implement a C Shared Library with a Driver Application”

 See Also

3-11

Distribute C/C++ Shared Libraries to Application
Developers

Distribute the following to the application developer integrating the shared library:

• Function signatures of the deployed MATLAB functions
• Generated shared library and header file
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts
required for distributing a shared library. The installer is located in the
for_redistribution folder of the compiler project.

3 Package a C/C++ Shared Library

3-12

Package a .NET Assembly

• “Generate a .NET Assembly and Build a .NET Application” on page 4-2
• “Package .NET Assemblies from Command Line” on page 4-9
• “Distribute .NET Assemblies to Application Developers” on page 4-12

4

Generate a .NET Assembly and Build a .NET Application
Supported platform: Windows

This example shows how to use the Library Compiler app to create a .NET Assembly for a
MATLAB function. You can then pass the generated package to the developer who is
responsible for integrating it into an application. This example also shows how to call
the .NET assembly from a .NET application. The target system does not require a licensed
copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesquare.m located in matlabroot\toolbox\dotnetbuilder\Examples
\VSVersion\NET\MagicSquareExample\MagicSquareComp.

makesquare.m

function y = makesquare(x)

y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create .NET Assembly Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command
prompt by entering:

libraryCompiler

4 Package a .NET Assembly

4-2

2 In the Type section of the toolstrip, click .NET Assembly.

In the MATLAB Compiler project window, specify the files of the MATLAB
application that you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function is added to the list of exported function files. Repeat this step to
package multiple files in the same application.

For this example, navigate to matlabroot\toolbox\dotnetbuilder\Examples
\VSVersion\NET\MagicSquareExample\MagicSquareComp and select
makesquare.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the
MATLAB Runtime installer in the generated application by selecting one of the
options:

• Runtime downloaded from web — Generate an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application. You
can specify the filename of the installer.

• Runtime included in package — Generate an application that includes the
MATLAB Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the
MATLAB Runtime installer or obtain a CD if you do not have Internet access.

 Generate a .NET Assembly and Build a .NET Application

4-3

Specify Assembly File Settings
1 The Library Name field is automatically populated with makesquare as the name of

the assembly. Rename it as MagicSquareComp. The same name is followed through
in the implementation of the assembly.

2 Verify that the function defined in makesquare.m is mapped into Class1.

3 Add MATLAB files to generate the sample .NET driver files. Although .NET driver
files are not necessary to create an assembly, they are used to demonstrate how to
“Build a .NET Application”.

In the Samples section, select Create New Sample, and click makesquare.m. A
MATLAB file opens for you to edit. Define the input variables as necessary for your
application, save the file, and return to the Library Compiler app. For more
information and limitations, see “Sample Driver File Creation”.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information
about the application as follows:

• Library information — Information about the deployed application. You can also
customize the appearance of the application by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Default installation path for the generated installer
and custom logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.
These files include:

4 Package a .NET Assembly

4-4

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

• Additional runtime settings — Platform-specific options for controlling the
generated executable. See “Additional Runtime Settings”.

 Generate a .NET Assembly and Build a .NET Application

4-5

4 Package a .NET Assembly

4-6

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Build a .NET Application
After creating your .NET assembly file, you can call it from a .NET application. The .NET
application that you create uses the sample .NET driver code generated during
packaging. The .NET driver code calls the .NET assembly file, and it is based on the
sample MATLAB file you selected in previous setup steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install
and Configure the MATLAB Runtime” (MATLAB Compiler), and that you have Microsoft
Visual Studio® installed.

1 Install the .NET assembly from the for_redistribution folder.

The generated shared libraries and support files are located in the for_testing
folder.

2 Open Microsoft Visual Studio and create a project. For this example, create a C#
Console Application called MainApp, and create a reference to your assembly file
MagicSquareComp.dll.

Ensure that the assembly is located in the application folder created where you
installed the component.

3 Create a reference to the MWArray API. The location of the API within MATLAB
Runtime is:

 Generate a .NET Assembly and Build a .NET Application

4-7

matlabroot\MATLAB Runtime\v96\toolbox\dotnetbuilder\bin\arch
\version\MWArray.dll

4 Go to Build > Configuration Manager, and change the platform from Any CPU to
x64.

5 Copy the generated sample .NET driver code makesquareSample1.cs from the
for_redistribution_files_only\samples folder into the project, and save it.

6 After you finish writing your code, build and run it with Microsoft Visual Studio.

See Also
deploytool | libraryCompiler | mcc

More About
• “Integrate a .NET Assembly Into a C# Application”

4 Package a .NET Assembly

4-8

Package .NET Assemblies from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 4-9
“Create .NET Assemblies with mcc” on page 4-9
“Differences Between Compiler Apps and Command Line” on page 4-11

You can package .NET assemblies at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Create .NET Assemblies with mcc
The mcc command invokes MATLAB Compiler to create a .NET assembly at the command
prompt and provides fine-level control while packaging the application. It does not
package the results in an installer.

The following command defines the complete mcc command syntax with all required and
optional arguments used to create a .NET assembly. Brackets indicate optional parts of
the syntax.

 Package .NET Assemblies from Command Line

4-9

mcc -W 'dotnet:component_name,class_name, 0.0|framework_version,
Private|Encryption_Key_Path,local|remote' file1 [file2...fileN]
[class{class_name:file1 [,file2,...,fileN]},... [-d output_dir_path] -T
link:lib

.NET Bundle

You can simplify the command line used to create .NET assemblies. To do so, use the
bundle named dotnet. Using this bundle still requires that you pass in the five parts
(including local|remote) of the -W argument text string; however, you do not have to
specify the -T option.

The following example creates a .NET assembly called mycomponent containing a
single .NET class named myclass with methods foo and bar.

mcc -B 'dotnet:mycomponent,myclass,2.0,
 encryption_keyfile_path,local'
 foo.m bar.m

In this example, the compiler uses the .NET Framework version 2.0 to package the
component into a shared assembly using the key file specified in
encryption_keyfile_path to sign the shared component.

Creating a .NET Namespace

The following example creates a .NET assembly from two MATLAB files foo.m and
bar.m.

mcc -B
'dotnet:mycompany.mygroup.mycomponent,myclass,0.0,Private,local'
 foo.m bar.m

The example creates a .NET assembly named mycomponent that has the following
namespace: mycompany.mygroup. The component contains a single .NET class
myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

using mycompany.mygroup;

Adding Multiple Classes to an Assembly

The following example creates a .NET assembly that includes more than one class. This
example uses the optional class{...} argument to the mcc command.

4 Package a .NET Assembly

4-10

mcc -B 'dotnet:mycompany.mycomponent,myclass,2.0,Private,local' foo.m bar.m
class{myclass2:foo2.m,bar2.m}

The example creates a .NET assembly named mycomponent with two classes:

• myclass has methods foo and bar
• myclass2 has methods foo2 and bar2

See NET.isNETSupported to check for a supported version of Microsoft .NET
framework.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Generate a .NET Assembly and Build a .NET Application”

 See Also

4-11

Distribute .NET Assemblies to Application Developers
Distribute the following to the application developer integrating the .NET assembly:

• Function signatures of the deployed MATLAB functions
• assemblyName.xml — generated documentation files
• assemblyName.dll — generated assembly file
• assemblyName.pdb — optionally generated program database file containing

debugging information
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts
required for distributing a .NET assembly. The installer is located in the
for_redistribution folder of the compiler project.

4 Package a .NET Assembly

4-12

Package a Java Application

• “Configure Your Java Environment” on page 5-2
• “Generate a Java Package and Build a Java Application” on page 5-5
• “Package Java Applications from Command Line” on page 5-11
• “Map Functions to Java Class Methods” on page 5-14
• “Distribute Java Applications to Application Developers” on page 5-17

5

Configure Your Java Environment
In this section...
“Install the Required JDK” on page 5-2
“Set JAVA_HOME” on page 5-3
“Set the CLASSPATH” on page 5-3
“Configure the Native Library Path Variables” on page 5-3

Before you can package MATLAB functions into Java applications or use the generated
Java application in a Java development environment, you must ensure that your Java
environment is properly configured. You should verify that:

• Your system uses the same version of the Java Developer’s Kit (JDK™) as MATLAB.
• JAVA_HOME is set to the folder containing the system’s JDK installation.
• CLASSPATH contains all of the MATLAB library JAR files and the JAR files for the

applications containing your packaged MATLAB code.
• The MATLAB native library paths are properly configured.

Note For updated Java system requirements, including versions of Java Developer's Kit
(JDK) and Java Runtime Environment (JRE), see the supported compiler page at https://
www.mathworks.com/support/compilers/current_release/.

Install the Required JDK
To install the proper version of the JDK:

1 Verify the version of Java your MATLAB installation is using by running the following
MATLAB command:

version -java
2 Download the matching version Java Developer's Kit (JDK) from https://

www.oracle.com/technetwork/java/javase/downloads/index.html.
3 Install the JDK, following the instructions provided by Oracle®.

Note If you are not developing applications or compiling MATLAB code, you can use the
Java Runtime Environment (JRE) instead of the JDK.

5 Package a Java Application

5-2

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html

Set JAVA_HOME
1 Set the system environment variable, JAVA_HOME, to point to your JDK installation.
2 At the MATLAB command prompt, type getenv JAVA_HOME to verify that MATLAB

is reading the correct version of JAVA_HOME.
3 Verify that the folder containing your Java installation has been added to your system

PATH environment variable.

Set the CLASSPATH
To build and run a Java application that uses a MATLAB Compiler SDK generated
package, the system must locate:

• JAR files containing the MATLAB libraries
• Applications that you have developed and built with the compiler

Java classes generated by the MATLAB Compiler SDK software use classes contained in
the com.mathworks.toolbox.javabuilder package. To use the compiled classes, you
should include a file called javabuilder.jar on the Java class path. You can find this
file in one of the following folders:

MATLAB installed on your system matlabroot/toolbox/
javabuilder/jar

MATLAB Runtime installed on your system mcrroot/toolbox/javabuilder/jar

Note matlabroot refers to the root folder into which the MATLAB installer has placed
the MATLAB files. mcrroot refers to the root folder under which MATLAB Runtime is
installed.

In addition, you should add to the JAR files created by the compiler to the class path.

Configure the Native Library Path Variables
The operating system uses the native library path to locate native libraries that are
needed to run your Java class. See the following list of variable names according to
operating system:

 Configure Your Java Environment

5-3

Windows PATH
Linux LD_LIBRARY_PATH
Macintosh DYLD_LIBRARY_PATH

The native MATLAB or MATLAB Runtime files needed to execute the packaged MATLAB
functions called from the Java code must be included on the paths listed by your system’s
native library path variable.

5 Package a Java Application

5-4

Generate a Java Package and Build a Java Application
Supported platform: Windows, Linux, Mac

This example shows how to use the Library Compiler app to create a Java package for a
MATLAB function. You can then pass the generated package to the developer who is
responsible for integrating it into an application. This example also shows how to call the
Java package from a Java application. The target system does not require a licensed copy
of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesqr.m located in matlabroot\toolbox\javabuilder\Examples
\MagicSquareExample\MagicDemoComp.

makesqr.m

function y = makesqr(x)

y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Java Application Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command
prompt by entering:

libraryCompiler

 Generate a Java Package and Build a Java Application

5-5

2 In the Type section of the toolstrip, click Java Package.

In the MATLAB Compiler project window, specify the files of the MATLAB
application that you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function is added to the list of exported function files. Repeat this step to
package multiple files in the same application.

For this example, navigate to matlabroot\toolbox\javabuilder\Examples
\MagicSquareExample\MagicDemoComp and select makesqr.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the
MATLAB Runtime installer in the generated application by selecting one of the
options:

• Runtime downloaded from web — Generate an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application. You
can specify the filename of the installer.

• Runtime included in package — Generate an application that includes the
MATLAB Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the
MATLAB Runtime installer or obtain a CD if you do not have Internet access.

Specify Package Settings
1 The Library Name field is automatically populated with makesqr as the name of the

package. The same name is followed through in the implementation of the package.

5 Package a Java Application

5-6

2 Verify that the function defined in makesqr.m is mapped into Class1.

3 Add MATLAB files to generate the sample Java driver files. Although Java driver files
are not necessary to create packages, they are used to demonstrate how to “Install
and Implement MATLAB Generated Java Application”.

In the Samples section, select Create New Sample, and click makesqr.m. A
MATLAB file opens for you to edit. Define the input variables as necessary for your
application, save the file, and return to the Library Compiler app. For more
information and limitations, see “Sample Driver File Creation”.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information
about the application as follows:

• Library information — Information about the deployed application. You can also
customize the appearance of the application by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Default installation path for the generated installer
and custom logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.
These files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

 Generate a Java Package and Build a Java Application

5-7

5 Package a Java Application

5-8

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Implement MATLAB Generated Java Application
After creating your Java packages, you can call them from a Java application. The Java
application that you create uses the sample Java driver code generated during packaging.
The Java driver code calls the Java packages, and it is based on the sample MATLAB file
you selected in previous setup steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install
and Configure the MATLAB Runtime” (MATLAB Compiler), and that you have the Java
Development Kit installed.

1 Copy and paste the generated Java driver code file from the
for_redistribution_files_only\samples folder into the
for_redistribution_files_only folder created when you created the package.

2 Use the system command line to navigate to the
for_redistribution_files_only folder, where you copied the generated sample
Java driver code file.

3 Compile the application using javac at the system command prompt.

javac -classpath "mcrroot\toolbox\javabuilder\jar\platform\javabuilder.jar";.\makesqr.jar .\getmagic.java

Note On UNIX platforms, use colon (:) as the class path delimiter instead of
semicolon (;).

 Generate a Java Package and Build a Java Application

5-9

mcrroot is the path to the MATLAB Runtime installation on your system. If you have
MATLAB installed on your system instead, you can use the path to your MATLAB
installation.

4 From the system command prompt, run the application. If you used sample MATLAB
code in the packaging steps, this application should return the same output as the
MATLAB code.

java -classpath .;"mcrroot\toolbox\javabuilder\jar\platform\javabuilder.jar";.\makesqr.jar makesqrSample1

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Place a dot (.) in the first position of the class path. If it is not there, you get a
message stating that Java cannot load the class.

Note On UNIX platforms, use colon (:) as the class path delimiter instead of
semicolon (;).

See Also
deploytool | libraryCompiler | mcc

5 Package a Java Application

5-10

Package Java Applications from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 5-11
“Package a Java Application with mcc” on page 5-11
“Differences Between Compiler Apps and Command Line” on page 5-12

You can package Java applications at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Package a Java Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the
command prompt and provides fine-level control while packaging the application. It does
not package the results in an installer.

To invoke the compiler to generate a Java application, use the -W
java:packageName,className flag with mcc. This flag creates a Java application

 Package Java Applications from Command Line

5-11

named packageName. The application contains a class className with methods for each
of the provided MATLAB functions.

Package Java applications using the following options.

Option Description
-a filePath Add any files on the path to the generated

binary.
-d outFolder Specify the folder into which the results of

packaging are written.
-S Specify that the generated classes

instantiate a singleton MATLAB Runtime.
class{className:mfilename...} Specify that an additional class is generated

that includes methods for the listed
MATLAB files.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

5 Package a Java Application

5-12

More About
• “Generate a Java Package and Build a Java Application”

 See Also

5-13

Map Functions to Java Class Methods

In this section...
“Map Functions to Java Classes with the Library Compiler App” on page 5-14
“Map Functions to Java Classes with mcc” on page 5-15

Map Functions to Java Classes with the Library Compiler App
The Library Compiler app presents a visual class mapper for mapping MATLAB functions
to Java classes. The class mapper is located between the Application Information and
the Additional Installer Options sections of the app.

The Namespace field at the top of the class browser specifies the name of the application
into which the generated classes are placed. By default, the name of the first listed
MATLAB file is used as the application name. You can change the application name to fit
the naming conventions used by your organization.

The table used to match functions to classes is below the application name. The Class
Name column specifies the name of the generated Java class. The Method Name column
specifies the list of MATLAB functions that are mapped into methods of the generated
class.

Add a New Class to a Java Application

To add a class to a Java application:

1 Click Add Class.
2 Rename the class as described in “Rename a Java Class” on page 5-15.
3 Add one or more methods to the class as described in “Add a Method to a Java Class”

on page 5-15.

5 Package a Java Application

5-14

Rename a Java Class

To rename a Java class:

1 Select the name of the class to be renamed.
2 Open the context menu.
3 Select Rename.
4 Enter the new class name.

The class name must follow the Java naming guidelines. It cannot contain any special
characters, dots, or spaces.

Delete a Class from a JavaApplication

To delete a class from a Java application:

1 Select the name of the class to be deleted.
2 Open the context menu.
3 Select Delete.

Add a Method to a Java Class

To add a method to a Java class:

1 In the Method Name column of the row for the class to which the method is being
added, click the plus button.

2 Select the name of the function to add.

Delete a Method from a Java Class

To delete a method from a Java class:

1 Select the name of the function to be deleted.
2 Open the context menu.
3 Select Delete.

Tip You can also delete the method using the Delete key.

Map Functions to Java Classes with mcc
When using mcc to generate Java applications, you map your MATLAB functions into Java
classes based on the list into which they are placed on the command line. Class groupings

 Map Functions to Java Class Methods

5-15

are specified by adding one or more class{className:mfilename...} entries to the
command line. All of the files not included in a class grouping are added to the class
specified by the -W java:packageName,className flag.

For example, mcc —W java:myPackage,MyClass fun1.m fun2.m fun3.m generates
a Java application myPackage that contains a single class MyClass. MyClass has three
methods: fun1, fun2, and fun3.

However, mcc —W java:myPackage,MyClass fun1.m fun2.m
class{MyOtherClass:fun3.m} generates a Java application myPackage that contains
two classes: MyClass and MyOtherClass. MyClass has two methods: fun1 and fun2.
MyOtherClass has one method fun3.

5 Package a Java Application

5-16

Distribute Java Applications to Application Developers
Distribute the following to the application developer integrating the application:

• Function signatures of the deployed MATLAB functions
• Generated application
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts
required for distributing a Java application. The installer is located in the
for_redistribution folder of the compiler project.

 Distribute Java Applications to Application Developers

5-17

Package a Python Application

• “Generate a Python Package and Build a Python Application” on page 6-2
• “Package Python Applications from Command Line” on page 6-8
• “Distribute Python Applications to Application Developers” on page 6-10

6

Generate a Python Package and Build a Python
Application

Supported platform: Windows, Linux, Mac

This example shows how to use the Library Compiler app to create a Python package
using for a MATLAB function. You can then pass the generated package to the developer
who is responsible for integrating it into an application. This example also shows how to
call the Python package from a Python application. The target system does not require a
licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, write a
function makesqr.m as follows:

function y = makesqr(x)

y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Python Application Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command
prompt by entering:

libraryCompiler

6 Package a Python Application

6-2

2 In the Type section of the toolstrip, click Python Package.

In the MATLAB Compiler project window, specify the files of the MATLAB
application that you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function is added to the list of exported function files. Repeat this step to
package multiple files in the same application.

For this example, select the makesqr.m file that you wrote earlier.
3 In the Packaging Options section of the toolstrip, decide whether to include the

MATLAB Runtime installer in the generated application by selecting one of the
options:

• Runtime downloaded from web — Generate an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application. You
can specify the filename of the installer.

• Runtime included in package — Generate an application that includes the
MATLAB Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the
MATLAB Runtime installer or obtain a CD if you do not have Internet access.

 Generate a Python Package and Build a Python Application

6-3

Specify Package Settings
1 The Library Name field is automatically populated with makesqr as the name of the

package. Rename it as MagicSquarePkg. The same name is followed through in the
implementation of the package. For more information on naming requirements for
the Python package, see “Import Compiled Python Packages”.

2 Add MATLAB files to generate the sample Python driver files. Although Python driver
files are not necessary to create packages, they are used to demonstrate how to
“Install and Run MATLAB Generated Python Application”.

In the Samples section, select Create New Sample, and click makesqr.m. A
MATLAB file opens for you to edit. Define the input variables as necessary for your
application, save the file, and return to the Library Compiler app. For more
information and limitations, see “Sample Driver File Creation”.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information
about the application as follows:

• Library information — Information about the deployed application. You can also
customize the appearance of the application by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Default installation path for the generated installer
and custom logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.
These files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

6 Package a Python Application

6-4

Package the Application
1 To generate the packaged application, click Package.

 Generate a Python Package and Build a Python Application

6-5

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Run MATLAB Generated Python Application
After creating your Python packages, you can call them from a Python application. The
Python application that you create uses the sample Python driver code generated during
packaging. The Python driver code calls the Python packages, and it is based on the
sample MATLAB file you selected in previous setup steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install
and Configure the MATLAB Runtime” (MATLAB Compiler), and that you have Python
installed.

1 Copy and paste the generated Python driver code file from the
for_redistribution_files_only\samples folder into the
for_redistribution_files_only folder created when you created the shared
library.

2 Use the system command line to navigate to the
for_redistribution_files_only folder, where you copied the generated sample
Python driver code file.

3 Install the application using python at the system command prompt.

python setup.py install
4 From the system command prompt, run the application. If you used sample MATLAB

code in the packaging steps, this application should return the same output as the
MATLAB code.

python makesqrSample1.py

6 Package a Python Application

6-6

[[8.0,1.0,6.0],
[3.0,5.0,7.0],
[4.0,9.0,2.0]]

Note On Mac OS X, you must use the mwpython script. The mwpython script is
located in the matlabroot/bin folder. matlabroot is the location of your MATLAB
installation.

For example, mwpython makesqrSample1.py

See Also
deploytool | libraryCompiler | mcc | mwpython

 See Also

6-7

Package Python Applications from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 6-8
“Package a Python Application with mcc” on page 6-8
“Differences Between Compiler Apps and Command Line” on page 6-9

Note MATLAB Compiler SDK cannot package MATLAB code that uses the MATLAB
Python interface.

You can package Python applications at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Package a Python Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the
command prompt and provides fine-level control while packaging the application. It does
not package the results in an installer.

6 Package a Python Application

6-8

To invoke the compiler to generate a Python application, use the -W
python:namespace.packageName flag with mcc. This flag creates a Python package
named packageName with methods for each of the provided MATLAB functions.

For packaging Python applications, you can also use the following options.

Option Description
-a filePath Add any files on the path to the generated

binary.
-d outFolder Specify the folder into which the results of

packaging are written.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Generate a Python Package and Build a Python Application”

 See Also

6-9

Distribute Python Applications to Application
Developers

Distribute the following to the application developer integrating the application:

• Function signatures of the deployed MATLAB functions
• Generated application
• Generated setup.py
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all the binary artifacts
required for distributing a Python application. The installer is located in the
for_redistribution folder of the compiler project.

6 Package a Python Application

6-10

Compile a Deployable Archive for
MATLAB Production Server

• “Package Deployable Archives with Production Server Compiler App” on page 7-2
• “Package Deployable Archives from Command Line” on page 7-6
• “Build Excel Add-In and Deployable Archive” on page 7-8

7

Package Deployable Archives with Production Server
Compiler App

Supported platform: Windows, Linux, Mac

This example shows how to create a deployable archive from a MATLAB function. You can
then hand the generated archive to a system administrator who will deploy it into
MATLAB Production Server.

Create Function In MATLAB
In MATLAB, examine the MATLAB program that you want packaged.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)
a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4
7; 2 5 8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler
App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Production Server Compiler. In the MATLAB
Compiler SDK project window, click Deployable Archive (.ctf).

7 Compile a Deployable Archive for MATLAB Production Server

7-2

Alternately, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the main file of the MATLAB
application that you want to deploy.

1
In the Exported Functions section of the toolstrip, click .

2 In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function addmatrix.m is added to the list of main files.

Customize the Application and Its Appearance
You can customize your deployable archive, and add more information about the
application as follows:

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required by the

generated archive to run. These files are included in the generated archive installer.
See “Manage Required Files in Compiler Project”.

• Files packaged for redistribution — Files that are installed with your application.
These files include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application”
• Include MATLAB function signature file — Add or create a function signature file

to help clients use your MATLAB functions.

 Package Deployable Archives with Production Server Compiler App

7-3

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

7 Compile a Deployable Archive for MATLAB Production Server

7-4

2 In the Package dialog box, verify that the option Open output folder when
process completes is selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — A folder containing the installer to distribute the
archive.

• for_testing — A folder containing the raw generated files to create the
installer

• PackagingLog.txt — Log file generated by the packaging tool.

See Also
deploytool | mcc | productionServerCompiler

More About
• Production Server Compiler

 See Also

7-5

Package Deployable Archives from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 7-6
“Package a Deployable Archive with mcc” on page 7-6
“Differences Between Compiler Apps and Command Line” on page 7-7

You can package deployable archives at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Package a Deployable Archive with mcc
The mcc command invokes the MATLAB Compiler and provides fine-level control over the
packaging of the deployable archive. It, however, cannot package the results in an
installer.

To invoke the compiler to generate a deployable archive, use the -W
CTF:component_name flag with mcc. The -W CTF:component_name flag creates a
deployable archive called component_name.ctf.

7 Compile a Deployable Archive for MATLAB Production Server

7-6

For packaging deployable archives, you can also use the following options.

Option Description
-a filePath Add any files on the path to the generated

binary.
-d outFolder Specify the folder into which the results of

packaging are written.
class{className:mfilename...} Specify that an additional class is generated

that includes methods for the listed
MATLAB files.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Package Deployable Archives with Production Server Compiler App” on page 7-2

 See Also

7-7

Build Excel Add-In and Deployable Archive

Note Excel add-in can be packaged using 64 bit Windows and can be deployed on either
32 or 64 bit Excel.

To create an Excel add-In that integrates with MATLAB Production Server:

1 Ensure that the setting Trust access to the VBA project object model is selected
in the Excel Trust Center.

2 Open the Production Server Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Production Server Compiler to open the project window.

7 Compile a Deployable Archive for MATLAB Production Server

7-8

3 In the Application Type section of the toolstrip, select Deployable Archive with
Excel Integration from the list.

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the desired files.
c Click Open to select the files and close the file explorer.

The selected files are added to the list of files and a minus button appears under
the plus button.

Note Functions that return a variable number of outputs are not supported by
add-ins that use code running on a MATLAB Production Server instance.

 Build Excel Add-In and Deployable Archive

7-9

5 Inspect the Archive Information section of the app.

The first text field is the name of the archive. The name of the archive determines the
names of the generated artifacts and the URL used to connect to the server.

6 Inspect the class mapping table to ensure that all desired functions are being
compiled.

7 If you need to change the marshaling rules for a function, select Data Conversion
Properties from the function name’s context menu.

For more information, see “Data Marshaling Rules”.
8 Optionally configure the default server configuration packaged with the installer.

The server configuration defines the connection to the MATLAB Production Server
instance running the MATLAB code.

a Search the Default Server Configuration table for the URL to package with
the installer.

b If it is in the table, select it.
c If not, click Add to add it to the table.

9 Inspect the Files required for your archive to run and Files installed with your
archive sections of the app.

These sections of the app list all of the files that are packaged with the compiled
code.

Files required for your archive to run lists the files on which your function is
dependent. They are packaged into the deployable archive and are only for the
server. See “Manage Required Files in Compiler Project” (MATLAB Production
Server).

Files installed with your archive includes sections for both the client and the
server. The files listed are generated by the compiler and should be delivered to the
person installing the application.

10 Click Package to generate the add-in and the deployable archive.

7 Compile a Deployable Archive for MATLAB Production Server

7-10

11 Select the Open output folder when process completes check box to display the
generated output.

When the deployment process is complete, a file explorer opens and displays the
generated output.

12 Click Close on the Package window.
13 Verify the contents of the generated output:

• for_redistribution — A client folder containing the generated installer and
a server folder containing a .zip file

• for_testing — A client folder containing the raw files generated for the add-
in and a server folder containing the raw files generated for the deployable
archive

• for_redistribution_files_only — A client folder containing only the files
needed to redistribute the add-in and a server folder containing only the files
needed to redistribute the deployable archive

• PackagingLog.txt — A log file generated by the compiler

 Build Excel Add-In and Deployable Archive

7-11

Package a COM Component

• “Create a Generic COM Component with MATLAB Code” on page 8-2
• “Package COM Components from Command Line” on page 8-7
• “Distribute COM Components to Application Developers” on page 8-12

8

Create a Generic COM Component with MATLAB Code
Supported platform: Windows

This example shows how to create a generic COM component using a MATLAB function.
You can then pass the generated package to the developer who is responsible for
integrating it into an application. The target system does not require a licensed copy of
MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesquare.m located in matlabroot\toolbox\dotnetbuilder\Examples
\VSVersion\COM\MagicSquareExample\MagicSquareComp.

function y = makesquare(x)

y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Generic COM Component Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Library Compiler. In the MATLAB Compiler
project window, click Generic COM Component.

8 Package a COM Component

8-2

Alternately, you can open the Library Compiler app by entering libraryCompiler
at the MATLAB prompt.

2 In the MATLAB Compiler project window, specify the files of the MATLAB
application that you want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function
you want to package. Click Open.

The function is added to the list of exported function files. Repeat this step to
package multiple files in the same application.

3 In the Packaging Options section of the toolstrip, decide whether to include the
MATLAB Runtime installer in the generated application by selecting one of the
options:

• Runtime downloaded from web — Generate an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application. You
can specify the filename of the installer.

• Runtime included in package — Generate an application that includes the
MATLAB Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the
MATLAB Runtime installer or obtain a CD if you do not have Internet access.

4 In the Library Name field, replace makesquare with MagicSquareComp.
5 Verify that the function defined in makesquare.m is mapped into Class1.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information
about the application as follows:

 Create a Generic COM Component with MATLAB Code

8-3

• Library information — Information about the deployed application. You can also
customize the appearance of the application by changing the application icon and
splash screen. The generated installer uses this information to populate the installed
application metadata. See “Customize the Installer”.

• Additional installer options — Default installation path for the generated installer
and custom logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated
application to run. These files are included in the generated application installer. See
“Manage Required Files in Compiler Project”.

• Files installed for your end user — Files that are installed with your application.
These files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

• Additional runtime settings — Platform-specific options for controlling the
generated executable. See “Additional Runtime Settings”.

8 Package a COM Component

8-4

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

 Create a Generic COM Component with MATLAB Code

8-5

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

See Also
deploytool | libraryCompiler | mcc

More About
• “Call COM Objects in Visual C++ Programs”

8 Package a COM Component

8-6

Package COM Components from Command Line
You can package COM components at the MATLAB prompt or your system prompt using
either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Create COM Component with mcc
The mcc command invokes MATLAB Compiler to create a COM component at the
command prompt and provides fine-level control while packaging the component. It does
not package the results in an installer.

A MATLAB class cannot be directly packaged into a COM object. You can, however, use a
user-generated class inside a MATLAB file and build a COM object from that file. You can
use the MATLAB command-line interface instead of the Library Compiler app to create
COM objects. Do this by issuing the mcc command with options. If you use mcc, you do
not create a project.

The following table provides an overview of some mcc options related to components,
along with syntax and examples of their usage.

 Package COM Components from Command Line

8-7

Action to Perform Description
Create component that
has one class.

mcc option to use: -W com

The W option with com as the type controls the generation of
wrapper files, which you can use to support components.
Syntax

mcc -W
'com:<component_name>[,<class_name>[,<major>.<m
inor>]]'

An unspecified <class_name> defaults to
<component_name>, and an unspecified version number
defaults to the latest version built or 1.0, if there is no
previous version.
Example

mcc -W 'com:mycomponent,myclass,1.0' -T
link:lib foo.m bar.m

The example creates a COM component called mycomponent,
which contains a single COM class named myclass with
methods foo and bar, and a version of 1.0.

Add additional classes to
a COM component.

mcc option to use: Not needed

A separate COM named <class_name> is created for each
class argument that is passed.

Following the <class_name> parameter is a comma-
separated list of source files that are encapsulated as
methods for the class.
Syntax

class{<class_name>:[file, [file,...]]}

8 Package a COM Component

8-8

Action to Perform Description
Example

mcc -B 'com:mycomponent,myclass,1.0' foo.m
bar.m class{myclass2:foo2.m, bar2.m}

The example creates a COM component named
mycomponent with two classes: myclass has methods foo
and bar, and myclass2 has methods foo2 and bar2. The
version is version 1.0.

Simplify the command-
line input for
components.

mcc option to use: -B com:

Uses the bundle.
Syntax

mcc -B '<bundle>'[:<a1>,<a2>,...,<an>]
Example

mcc -B 'com:mycomponent,myclass,1.0' foo.m
bar.m

 Package COM Components from Command Line

8-9

Action to Perform Description
Control how each COM
class uses the MATLAB
Runtime.

mcc option to use: -S

By default, a new MATLAB Runtime instance is created for
each instance of each COM class in the component. Use -S to
change the default.

This option tells the compiler to create a single MATLAB
Runtime at the time when the first COM class is instantiated.
This MATLAB Runtime is reused and shared among all
subsequent class instances, resulting in more efficient
memory usage and eliminating the MATLAB Runtime startup
cost in each subsequent class instantiation.

When using -S, note that all class instances share a single
MATLAB workspace and share global variables in the
MATLAB files used to build the component. Therefore,
properties of a COM class behave as static properties instead
of instance-wise properties.

Note The default behavior dictates that a new MATLAB
Runtime be created for each instance of a class, so when the
class is destroyed, the MATLAB Runtime is destroyed as well.
If you want to retain the state of global variables (such as
those allocated for drawing figures, for instance), use the -S
option.
Example

mcc -S -B 'com:mycomponent,myclass,1.0' foo.m
bar.m

The example creates a COM component called mycomponent
containing a single COM class named myclass with methods
foo and bar, and a version of 1.0.

When multiple instances of this class are instantiated in an
application, only one MATLAB Runtime is initialized, and it is
shared by each instance.

8 Package a COM Component

8-10

Action to Perform Description
Create subfolders needed
for deployment and copy
associated files to them.

mcc option to use: -d

The \src and \distrib subfolders are used to package
components.
Syntax

-d foldername

Differences Between Compiler Apps and Command Line

You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Create a Generic COM Component with MATLAB Code”

 See Also

8-11

Distribute COM Components to Application Developers
Distribute the following to the application developer integrating the component:

• Function signatures of the deployed MATLAB functions
• Generated COM component
• mwcomutil.dll
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts
required for distributing a COM component. The installer is located in the
for_redistribution folder of the compiler project.

8 Package a COM Component

8-12

Customizing a Compiler Project

• “Customize an Application” on page 9-2
• “Manage Support Packages” on page 9-11

9

Customize an Application
You can customize an application in several ways: customize the installer, manage files in
the project, or add a custom installer path using the Application Compiler app or the
Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or
Application name field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the
Use mask option to fill any blank spaces around the icon with white or the Use border
option to add a border around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if
the name is foo, the installed executable is foo.exe, and the Windows start menu
entry is foo. The folder created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of
the app.

• Version: The default value is 1.0.
• Author name: Name of the developer.

9 Customizing a Compiler Project

9-2

• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For

example, if the company name is bar, the full installation path would be
InstallRoot/bar/ApplicationName.

• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page
of the installer. On Windows systems, this information is also displayed in the Windows
Add/Remove Programs control panel.

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along
with a status bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When
the file explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

 Customize an Application

9-3

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries
onto a target system.

Windows C:\Program Files\companyName
\appName

Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder
field under Additional installer options.

A text field specifying the path appended to the root folder is your installation folder. You
can pick the root folder for the application installation folder. This table lists the optional
custom root folders for each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the
installer.

You change the default image in Additional Installer Options by clicking Select
custom logo. When the file explorer opens, locate and select a new image. You can drag
and drop a custom image onto the default logo.

9 Customizing a Compiler Project

9-4

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged
files on the target system. You can provide useful information concerning any additional
setup that is required to use the installed binaries and instructions for how to run the
application.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what
additional MATLAB files are required for the application to package and run. These files
are automatically packaged into the generated binary. The compiler does not generate
any wrapper code that allows direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency
analysis function are listed in the Files required for your application to run or Files
required for your library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To
remove files, select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not
package or not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of
required files before running. Instead, it packages all the required files that are
discovered by the dependency analysis function and adds them to the generated binary
file.

You can add files to the list by passing one or more -a arguments to mcc. The -a
arguments add the specified files to the list of files to be added into the generated binary.
For example, -a hello.m adds the file hello.m to the list of required files and -
a ./foo adds all the files in foo and its subfolders to the list of required files.

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

 Customize an Application

9-5

• C++ shared library
• Java package
• .NET assembly
• Python package

The sample driver file creation feature in Library Compiler uses MATLAB code to
generate sample driver files in the target language. The sample driver files are used to
implement the generated shared libraries into an application in the target language. In
the app, click Create New Sample to automatically generate a new MATLAB script, or
click Add Existing Sample to upload a MATLAB script that you have already written.
After you package your functions, a sample driver file in the target language is generated
from your MATLAB script and is saved in for_redistribution_files_only
\samples. Sample driver files are also included in the installer in
for_redistribution.

To automatically generate a new MATLAB file, click Create New Sample. This opens up
a MATLAB file for you to edit. The sample file serves as a starting point, and you can edit
it as necessary based on the behavior of your exported functions. The sample MATLAB
files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical,

struct, or cell array.
• Data must be saved as a local variable and then passed to the exported function in the

sample file code.

Additional considerations specific to the target language are as follows:

9 Customizing a Compiler Project

9-6

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Only char, struct, and cell arrays are supported.

To upload a MATLAB file that you have already written, click Add Existing Sample. The
MATLAB code should demonstrate how to execute the exported functions. The required
MATLAB code can be only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample
option.

You can also choose not to include a sample driver file at all during the packaging step. If
you create your own driver code in the target language, you can later copy and paste it
into the appropriate directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the
installer includes a readme file with instructions on installing the MATLAB Runtime and
configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not
install the intended functionality.

When installed on a target computer, the files listed in the Files installed for your end
user are saved in the application folder.

 Customize an Application

9-7

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Generic COM
Components

• Register the
component for
the current user
(Recommended
for non-admin
users) —This
option enables
registering the
component for the
current user
account. It is
provided for users
without admin
rights.

9 Customizing a Compiler Project

9-8

Type of Packaged
Application

Description Additional Runtime Settings Options

.NET Assembly • Create Shared
Assembly —
Enables sharing
MATLAB Runtime
installer instances
for multiple .NET
assemblies.

• Enable .NET
Remoting —
Enables you to
remotely access
MATLAB
functionality, as a
part of a distributed
system. For more
information, see
“Create a
Remotable .NET
Assembly”.

• Enable Type Safe
API — Enables the
type safe API for
the packaged .NET
assembly.

API Selection for C++ Shared Library

 Customize an Application

9-9

• Create all interfaces — Create interfaces for shared libraries using both the
mwArray API and the MATLAB Data API.

• Create interface that uses the mwArray API — Create an interface for a shared
library using the mwArray API. The interface uses C-style functions to initialize the
MATLAB Runtime, load the compiled MATLAB functions into the MATLAB Runtime,
and manage data that is passed between the C++ code and the MATLAB Runtime. The
interface supports only C++03 functionality. For an example, see “Generate a C++
mwArray API Shared Library and Build a C++ Application”.

• Create interface that uses the MATLAB Data API — Create an interface for a
shared library using MATLAB Data API. It uses a generic interface that has modern C
++ semantics. The interface supports C++11 functionality. For more information, see
“Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”.

See Also
libraryCompiler

More About
• “Create a C Shared Library with MATLAB Code”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
• “Generate a .NET Assembly and Build a .NET Application”
• “Create a Generic COM Component with MATLAB Code”
• “Generate a Java Package and Build a Java Application”
• “Generate a Python Package and Build a Python Application”

9 Customizing a Compiler Project

9-10

Manage Support Packages

Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, the app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list
is determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the

mcc.xml file of the support package, and the base product of the support package is
MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In
this case, the compiler adds the information to the installation notes. You can edit

 Manage Support Packages

9-11

installation notes in the Additional Installer Options section of the app. To remove the
installation note text, deselect the support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the
support package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, use the-a flag with mcc command when packaging your MATLAB code
to specify supporting files in the support package folder. For example, if your function
uses the OS Generic Video Interface support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In
this case, you are responsible for downloading and installing the required drivers.

9 Customizing a Compiler Project

9-12

Advanced Uses of the Command
Line Compiler

• “Simplify Compilation Using Macros” on page 10-2
• “Invoke MATLAB Build Options” on page 10-4
• “MATLAB Runtime Component Cache and Deployable Archive Embedding”

on page 10-7

10

Simplify Compilation Using Macros
In this section...
“Macros” on page 10-2
“Working With Macros” on page 10-2

Macros
The compiler, through its exhaustive set of options, gives you access to the tools you need
to do your job. If you want a simplified approach to compilation, you can use one simple
macro that allows you to quickly accomplish basic compilation tasks. Macros let you
group several options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard
compilation and the multioption alternative.

Macro Bundle Creates Option Equivalence

Function Wrapper |Output
Stage ||

-l macro_option_l Library -W lib -T link:lib
-m macro_option_m Standalone application -Wmain-Tlink:exe

Working With Macros
The -m option tells the compiler to produce a standalone application. The -m macro is
equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they
provide to the compiler.

10 Advanced Uses of the Command Line Compiler

10-2

-m Macro

Option Function
-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macros

You can change the meaning of a macro by editing the corresponding macro_option file
in matlabroot\toolbox\compiler\bundles. For example, to change the -m macro,
edit the file macro_option_m in the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

Specifying Default Macros

As the MCCSTARTUP functionality has been replaced by bundle technology, the
macro_default file that resides in toolbox\compiler\bundles can be used to
specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

 mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

mcc -v -W 'lib:libfoo' -T link:lib foo.m

 Simplify Compilation Using Macros

10-3

Invoke MATLAB Build Options
In this section...
“Specify Full Path Names to Build MATLAB Code” on page 10-4
“Using Bundles to Build MATLAB Code” on page 10-5

Specify Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line, the compiler

1 Breaks the full name into the corresponding path name and file names (<path> and
<file>).

2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Path Names

For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example,
suppose you have two different MATLAB files that are both named myfile.m and they
reside in /home/user/dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The compiler finds the myfile.m in dir1 and compiles it instead of the one in dir2
because of the behavior of the -I option. If you are concerned that this might be
happening, you can specify the -v option and then see which MATLAB file the compiler
parses. The -v option prints the full path name to the MATLAB file during the dependency
analysis phase.

10 Advanced Uses of the Command Line Compiler

10-4

Note The compiler produces a warning (specified_file_mismatch) if a file with a
full path name is included on the command line and the compiler finds it somewhere else.

Using Bundles to Build MATLAB Code
Bundles provide a convenient way to group sets of compiler options and recall them as
needed. The syntax of the bundle option is:

-B <bundle>[:<a1>,<a2>,...,<an>]

where bundle is either a predefined string such as cpplib or csharedlib or the name
of a file that contains a set of mcc command-line options, arguments, filenames, and/or
other -B options.

A bundle can include replacement parameters for compiler options that accept names and
version numbers. For example, the bundle for C shared libraries, csharedlib, consists
of:

-W lib:%1% -T link:lib

To invoke the compiler to produce the C shared library mysharedlib use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle will be replaced with the corresponding option
specified to the bundle. Use %% to include a % character. It is an error to pass too many or
too few options to the bundle.

Note You can use the -B option with a replacement expression as is at the DOS or UNIX
prompt. If more than one parameter is passed, you must enclose the expression that
follows the -B in single quotes. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only parameter
being passed. If the example had two or more parameters, then the quotes would be
necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

 Invoke MATLAB Build Options

10-5

Available Bundle Files

Bundle File Creates Contents
cpplib C++ library -W cpplib:library_name -T link:lib
csharedlib C library -W lib:library_name -T link:lib
ccom COM component -W com:component_name,className,version -T

link:lib
cexcel Excel Add-in -W excel:addin_name,className,version -T

link:lib
cjava Java package -W java:packageName,className
dotnet .NET assembly -W

dotnet:assembly_name,className,framework_versi
on,security,remote_type -T link:lib

10 Advanced Uses of the Command Line Compiler

10-6

MATLAB Runtime Component Cache and Deployable
Archive Embedding

In this section...
“Overriding Default Behavior” on page 10-8
“For More Information” on page 10-8

Deployable archive data is automatically embedded directly in compiled components and
extracted to a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically
extracted

• Add diagnostic error printing options that can be used when automatically extracting
the deployable archive, for troubleshooting purposes

• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of

where you want the deployable
archive to be extracted, this
variable overrides the default
per-user component cache
location. This is true for
embedded .ctf files only.

Does not apply

 MATLAB Runtime Component Cache and Deployable Archive Embedding

10-7

Environment Variable Purpose Notes
MCR_CACHE_SIZE When set, this variable

overrides the default component
cache size.

The initial limit for this variable
is 32M (megabytes). This may,
however, be changed after you
have set the variable the first
time. Edit the file .max_size,
which resides in the file
designated by running the
mcrcachedir command, with
the desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the
“Overriding Default Behavior” on page 10-8 option.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable
archive will not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you
had specified a -C option to the command line.

Overriding Default Behavior
To extract the deployable archive in a manner prior to R2008b, alongside the
compiled .NET assembly, compile using the mcc's -C option.

You might want to use this option to troubleshoot problems with the deployable archive,
for example, as the log and diagnostic messages are much more visible.

For More Information
For more information about the deployable archive, see “Deployable Archive” (MATLAB
Compiler).

10 Advanced Uses of the Command Line Compiler

10-8

Work with the MATLAB Runtime

• “MATLAB Runtime Startup Options” on page 11-2
• “Using the MATLAB Runtime User Data Interface” on page 11-5
• “Display the MATLAB Runtime Initialization Messages” on page 11-7

11

MATLAB Runtime Startup Options

Retrieve MATLAB Runtime Startup Options
Use these functions to return data about the MATLAB Runtime state when working with
shared libraries.

Function and Signature When to Use Return Value
bool
mclIsMCRInitialized()

Use mclIsMCRInitialized()
to determine whether or not the
MATLAB Runtime has been
properly initialized.

Boolean (true or false).
Returns true if MATLAB
Runtime is already initialized,
else returns false.

bool mclIsJVMEnabled() Use mclIsJVMEnabled() to
determine if the MATLAB
Runtime is started with an
instance of a Java Virtual
Machine (JVM™).

Boolean (true or false).
Returns true if MATLAB
Runtime has been started with a
JVM instance, else returns
false.

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log file
used by the MATLAB Runtime.

Character string representing
log file name used by the
MATLAB Runtime, preceded by
the character.

11 Work with the MATLAB Runtime

11-2

Function and Signature When to Use Return Value
bool mclIsNoDisplaySet() Use mclIsNoDisplaySet() to

determine if -nodisplay
option is enabled.

Boolean (true or false).
Returns true if -nodisplay is
enabled, else returns false.

Note false is always returned
on Windows systems since the -
nodisplay option is not
supported on Windows systems.

When running on Mac, if -
nodisplay is used as one of
the options included in
mclInitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain.

Note All of these attributes have properties of write-once, read-only.

Retrieve Information About MATLAB Runtime Startup Options

The following example demonstrates how to pass options to a C or C++ shared library
and how to retrieve the corresponding values after they are set.

 const char* options[4];
 options[0] = "-logfile";
 options[1] = "logfile.txt";
 options[2] = "-nojvm";
 options[3] = "-nodisplay";
 if(!mclInitializeApplication(options,4))
 {
 fprintf(stderr,
 "Could not initialize the application.\n");
 return -1;
 }
 printf("MCR initialized : %d\n", mclIsMCRInitialized());
 printf("JVM initialized : %d\n", mclIsJVMEnabled());

 MATLAB Runtime Startup Options

11-3

 printf("Logfile name : %s\n", mclGetLogFileName());
 printf("nodisplay set : %d\n", mclIsNoDisplaySet());
 fflush(stdout);

11 Work with the MATLAB Runtime

11-4

Using the MATLAB Runtime User Data Interface
The MATLAB Runtime User Data Interface lets you easily access MATLAB Runtime data.
It allows keys and values to be passed among a MATLAB Runtime instance, the MATLAB
code running on the MATLAB Runtime, and the host application that created the instance.
Through calls to the MATLAB Runtime User Data Interface API, you access MATLAB
Runtime data by creating a per-instance associative array of mxArrays, consisting of a
mapping from string keys to mxArray values. Reasons for doing this include, but are not
limited to the following:

• You need to supply run-time profile information to a client running an application
created with the Parallel Computing Toolbox™. You supply and change profile
information on a per-execution basis. For example, two instances of the same
application may run simultaneously with different profiles. For more information, see
“Use Parallel Computing Toolbox in Deployed Applications”.

• You want to set up a global workspace, a global variable, or variables that MATLAB
and your client can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application MATLAB code
• Four external C functions callable from within deployed application wrapper code

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from deployed
MATLAB applications. They are loaded by default only in applications created with the
MATLAB Compiler or MATLAB Compiler SDK products.

You can include setmcruserdata and getmcruserdata in your packaged application
using mcc as follows:

mcc -g -W cpplib:<lib> -T link:lib ... setmcruserdata.m getmcruserdata.m

You can also use the %# function in your MATLAB file to include setmcruserdata and
getmcruserdata. Doing so ensures inclusion of these functions in the packaged
application when you use deploytool.

 Using the MATLAB Runtime User Data Interface

11-5

Tip getmcruserdata and setmcruserdata produce an Unknown function error
when called in MATLAB if the MCLMCR module cannot be located. You can avoid this
situation by calling isdeployed before calling getmcruserdata and setmcruserdata.
For more information about the isdeployed function, see the isdeployed reference
page.

Set and Retrieve MATLAB Runtime Data for Shared Libraries
There are many possible scenarios for working with MATLAB Runtime data. The most
general scenario involves setting the MATLAB Runtime with specific data for later
retrieval, as follows:

1 In your code, include the MATLAB Runtime header file and the library header
generated by MATLAB Compiler SDK.

2 Properly initialize your application using mclInitializeApplication.
3 After creating your input data, write or set it to the MATLAB Runtime with

setmcruserdata.
4 After calling functions or performing other processing, retrieve the new MATLAB

Runtime data with getmcruserdata.
5 Free up storage memory in work areas by disposing of unneeded arrays with

mxDestroyArray.
6 Shut down your application properly with mclTerminateApplication.

See Also
getmcruserdata | setmcruserdata

11 Work with the MATLAB Runtime

11-6

Display the MATLAB Runtime Initialization Messages
You can display a console message for end users that informs them when MATLAB
Runtime initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB runtime version
x.xx)

• Customize the start-up or completion message with text of your choice. The default
start-up message will also display prior to displaying your customized start-up
message.

Some examples of different ways to invoke this option follow:

This command: Displays:
mcc -R -startmsg Default start-up message Initializing

MATLAB Runtime version x.xx
mcc -R -startmsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for start-up

mcc -R -completemsg,'user
customized message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for
completion

mcc -R -startmsg,'user customized
message' -R -completemsg,'user
customized message"

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for both
start-up and completion by specifying -R
before each option

mcc -R -startmsg,'user customized
message',-completemsg,'user
customized message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for both
start-up and completion by specifying -R
only once

 Display the MATLAB Runtime Initialization Messages

11-7

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB command window, place the comma inside the single
quote.

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'
• If your initialization message has a space in it, call mcc from the system command

window or use !mcc from MATLAB.

11 Work with the MATLAB Runtime

11-8

Limitations and Restrictions

• “Limitations” on page 12-2
• “Functions not supported by MATLAB Compiler / MATLAB Compiler SDK ”

on page 12-9

12

Limitations

Packaging MATLAB and Toolboxes
MATLAB Compiler SDK supports the full MATLAB language and almost all toolboxes
based on MATLAB except:

• Most of the prebuilt graphical user interfaces included in MATLAB and its companion
toolboxes.

• Functionality that cannot be called directly from the command line.
• Symbolic Math Toolbox™
• Cross-platform compatibility of applications. For example, you cannot run an

application compiled in Windows on Linux.

Compiled applications can run only on operating systems that run MATLAB. However,
components generated by the MATLAB Compiler SDK cannot be used in MATLAB. Also,
since the MATLAB Runtime is approximately the same size as MATLAB, applications built
with MATLAB Compiler SDK need specific storage memory and RAM to operate. For the
most up-to-date information about system requirements, go to the MathWorks website.

To see the full list of MATLAB Compiler SDK limitations, visit: https://
www.mathworks.com/products/compiler/compiler_support.html.

Note For a list of functions not supported by the MATLAB Compiler SDK See “Functions
not supported by MATLAB Compiler / MATLAB Compiler SDK” on page 12-9.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler SDK creates a standalone application, it packages the MATLAB
files that you specify on the command line. In addition, it includes any other MATLAB files
that your packaged MATLAB files call. MATLAB Compiler SDK uses a dependency
analysis, which determines all the functions on which the supplied MATLAB files, MEX-
files, and P-files depend.

Note If the MATLAB file associated with a p-file is unavailable, the dependency analysis
cannot discover the p-file dependencies.

12 Limitations and Restrictions

12-2

https://www.mathworks.com/support/sysreq.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

The dependency analysis cannot locate a function if the only place the function is called in
your MATLAB file is a call to the function in either of the following:

• Callback string
• Character array passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer in .mat
files that are loaded by compiled applications. Use the mcc -a argument or the
%#function pragma to identify .mat file classes or functions that are supported by
the load command.

MATLAB Compiler SDK does not look in these text character arrays for the names of
functions to package.

Symptom

Your application runs, but an interactive user interface element, such as a push button,
does not work. The compiled application issues this error message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function
 change_colormap from FEVAL in stand-alone mode.

Workaround

There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as character arrays
• Specifying callbacks with function handles
• Using the -a option

Specifying Callbacks as Character Arrays

Create a list of all the functions that are specified only in callback character arrays and
pass these functions using separate %#function pragma statements. This overrides the
product dependency analysis and instructs it to explicitly include the functions listed in
the %#function pragmas.

For example, the call to the change_colormap function in the sample application
my_test illustrates this problem. To make sure MATLAB Compiler SDK processes the
change_colormap MATLAB file, list the function name in the %#function pragma.

 Limitations

12-3

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
 'Style', 'pushbutton',...
 'Position',[10 10 133 25],...
 'String', 'Make Black & White',...
 'CallBack','change_colormap');

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example
above, and replace the last line with:

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB Programming
Fundamentals documentation.

Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing
MATLAB file on the MATLAB Compiler SDK command line using the -a option.

Finding Missing Functions in a MATLAB File
To find functions in your application that need to be listed in a %#function pragma,
search your MATLAB file source code for text specified as callback character arrays or as
arguments to the feval, fminbnd, fminsearch, funm, and fzero functions or any ODE
solvers.

To find text used as callback character array, search for the characters “Callback” or “fcn”
in your MATLAB file. This search finds all the Callback properties defined by graphics
objects, such as uicontrol and uimenu. In addition, it finds the properties of figures
and axes that end in Fcn, such as CloseRequestFcn, that also support callbacks.

12 Limitations and Restrictions

12-4

Suppressing Warnings on the UNIX System
Several warnings might appear when you run a standalone application on the UNIX
system.

To suppress the libjvm.so warning, set the dynamic library path properly for your
platform. See “MATLAB Runtime Path Settings for Run-Time Deployment”.

You can also use the compiler option -R -nojvm to set your application's nojvm run-time
option, if the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you get a run-
time error.

Cannot Create the Output File
If you receive this error, there are several possible causes to consider.

Can't create the output file filename

Possible causes include:

• Lack of write permission for the folder where MATLAB Compiler SDK is attempting to
write the file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler SDK is attempting to
write the file (most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is possible that
a process is running and is blocking MATLAB Compiler SDK from overwriting it with a
new version.

No MATLAB File Help for Packaged Functions
If you create a MATLAB file with self-documenting online help and package it, the results
of following command are unintelligible:

help filename

 Limitations

12-5

Note For performance reasons, MATLAB file comments are stripped out before MATLAB
Runtime encryption.

No MATLAB Runtime Versioning on Mac OS X
The feature that allows you to install multiple versions of the MATLAB Runtime on the
same machine is not supported on Mac OS X. When you receive a new version of
MATLAB, you must recompile and redeploy all your applications and components. Also,
when you install a new MATLAB Runtime on a target machine, you must delete the old
version of the MATLAB Runtime and install the new one. You can have only one version of
the MATLAB Runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler
Loading networks saved from older Deep Learning Toolbox versions requires some
initialization routines that are not deployable. Therefore, these networks cannot be
deployed without first being updated.

For example, deploying with Deep Learning Toolbox Version 5.0.1 (2006b) and MATLAB
Compiler Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
 function "initwb".
Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in
Packaged Mode
In compiled mode, only one argument can be present in a call to the MATLAB printdlg
function (for example, printdlg(gcf)).

You cannot receive an error when making at call to printdlg with multiple arguments.
However, when an application containing the multiple-argument call is packaged, the
action fails with the following error message:

12 Limitations and Restrictions

12-6

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

Packaging a Function with which Does Not Search Current
Working Folder
Using which, as in this example, does not cause the current working folder to be
searched in deployed applications. In addition, it may cause unpredictable behavior of the
open function.

function pathtest
which myFile.mat
open('myFile.mat')

Use one of the following solutions as an alternative:

• Use the pwd function to explicitly point to the file in the current folder, as follows:

open([pwd '/myFile.mat'])

• Rather than using the general open function, use load or other specialized functions
for your particular file type, as load explicitly checks for the file in the current folder.
For example:

load myFile.mat

• Include your file in the Files required for your application to run area of the
Compiler app or the -a flag using mcc.

Restrictions on Using C++ SETDATA to Dynamically Resize an
mwArray
You cannot use the C++ SETDATA function to dynamically resize mwArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SETDATA to increase the size of the array to a length of five elements.

 Limitations

12-7

See Also

More About
• “Functions not supported by MATLAB Compiler / MATLAB Compiler SDK” on page

12-9

12 Limitations and Restrictions

12-8

Functions not supported by MATLAB Compiler / MATLAB
Compiler SDK

Note Due to the number of active and ever-changing list of MathWorks products and
functions, this is not a complete list of functions that cannot be compiled. If you have a
question as to whether a specific MathWorks product's function is able to be compiled or
not, the definitive source is that product's documentation. For an updated list of such
functions, see Support for MATLAB and Toolboxes.

Functions that cannot be compiled fall into the following categories:

• Functions that print or report MATLAB code from a function, for example, the
MATLAB help function or debug functions, do not work.

• Simulink® functions, in general, do not work.
• Functions that require a command line, for example, the MATLAB lookfor function,

do not work.
• clc, home, and savepath do not do anything in deployed mode.
• Only certain tools that allow run-time manipulation of figures are supported, for

example, adding legends, selecting data points, zooming in and out, etc.

Returned values from standalone applications are 0 for successful completion or a
nonzero value otherwise.

In addition, there are functions and programs that have been identified as nondeployable
due to licensing restrictions.

mccExcludedFiles.log lists all the functions and files excluded by mcc if they cannot
be compiled. It is created after each attempted build if there are functions or files that
cannot be compiled.

 Functions not supported by MATLAB Compiler / MATLAB Compiler SDK

12-9

https://www.mathworks.com/products/compiler/supported/compiler_support.html

List of Unsupported Functions and Programs

add_block
add_line
checkcode
close_system
colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromWsdl
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
delete_block
delete_line
depfun
doc
echo
edit
fields
figure_palette
get_param
help
home

12 Limitations and Restrictions

12-10

inmem
keyboard
linkdata
linmod
matlab.unittest.TestSuite.fromProject
mislocked
mlock
more
munlock
new_system
open_system
pack
pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
rehash
restoredefaultpath
run
segment
set_param
sim
sldebug
type

 Functions not supported by MATLAB Compiler / MATLAB Compiler SDK

12-11

Functions

13

%#function
Pragma to help MATLAB Compiler locate functions called through feval, eval, Handle
Graphics callback, or objects loaded from MAT-files

Syntax
%#function function1 [function2 ... functionN]

%#function object_constructor

Description
The %#function pragma informs MATLAB Compiler that the specified function(s) will be
called through an feval, eval,Handle Graphics callback, or objects loaded from MAT-
files.

Use the %#function pragma in standalone applications to inform MATLAB Compiler that
the specified function(s) should be included in the compilation, whether or not MATLAB
Compiler's dependency analysis detects the function(s). It is also possible to include
objects by specifying the object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and
compile all MATLAB files used in your application. This pragma adds the top-level
function as well as all the local functions in the file to the compilation.

Examples
Example 1
 function foo
 %#function bar

 feval('bar');

 end %function foo

13 Functions

13-2

By implementing this example, MATLAB Compiler is notified that function bar will be
included in the compilation and is called through feval.

Example 2
function foo
 %#function bar foobar

 feval('bar');
 feval('foobar');

 end %function foo

In this example, multiple functions (bar and foobar) are included in the compilation and
are called through feval.

Example 3
function foo
 %#function ClassificationSVM

 load('svm-classifier.mat');
 num_dimensions = size(svm_model.PredictorNames, 2);

 end %function foo

In this example, an object from the class ClassificationSVM is loaded from a MAT-file.
For more information, see “MATLAB Data Files in Compiled Applications” (MATLAB
Compiler).

Introduced before R2006a

 %#function

13-3

componentinfo
Query system registry about COM component created with MATLAB Compiler SDK

Syntax
info = componentinfo
info = componentinfo(component_name)
info = componentinfo(component_name, major_revision_number)
info = componentinfo(component_name, major_revision_number,
minor_revision_number)

Arguments
component_name MATLAB character array naming the COM

component created by MATLAB Compiler SDK.
Names are case sensitive. If the argument is not
supplied, information is returned on all installed
components.

major_revision_number Component major revision number. If the argument is
not supplied, information is returned on all major
revisions.

minor_revision_number Component minor revision number. Default value is 0.

Description
info = componentinfo returns information for all components installed on the system.

info = componentinfo(component_name) returns information for all revisions of
component_name.

info = componentinfo(component_name, major_revision_number) returns
information for the most recent minor revision corresponding to
major_revision_number of component_name.

13 Functions

13-4

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major and minor version
of component_name.

The return value is an array of structures representing all the registry and type
information needed to load and use the component.

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown next.

Value Information Returned
> 0 Information on a specific major and minor revision.
0 Information on the most recent revision. When omitted,

minor_revision_number is assumed to be 0.
< 0 Information on all versions.

This table describes the fields in componentinfo.

 componentinfo

13-5

Registry Information Returned by componentinfo

Field Description
Name Component name.
TypeLib Component type library.
LIBID Component type library GUID.
MajorRev Major version number .
MinorRev Minor version number.
FileName Type library file name and path. Since all the compiler

components have the type library bound into the DLL, this file
name is the same as the DLL name and path.

Interfaces An array of structures defining all interface definitions in the type
library. Each structure contains two fields:

• Name - Interface name.
• IID - Interface GUID.

13 Functions

13-6

Field Description
CoClasses An array of structures defining all COM classes in the component.

Each structure contains these fields:

• Name - Class name.
• CLSID - GUID of the class.
• ProgID - Version-dependent program ID.
• VerIndProgID - Version-independent program ID.
• InprocServer32 - Full name and path to component DLL.
• Methods - A structure containing function prototypes of all

class methods defined for this interface. This structure
contains four fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

• Properties - A cell array containing the names of all class
properties.

• Events - A structure containing function prototypes of all
events defined for this class. This structure contains four
fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

 componentinfo

13-7

Examples
Function Call Returned Information
Info = componentinfo Information for all installed

components.
Info = componentinfo('mycomponent') Information for all revisions of

mycomponent.
Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0 of
mycomponent.

Tips
Use the componentinfo function to get information (such as class name, program ID) to
pass on to users of a component that you create.

The componentinfo function also provides a record of changes made to the registry on
your development machine. This information might be useful for debugging if you run into
problems.

Introduced before R2006a

13 Functions

13-8

ctfroot
Location of files related to deployed application

Syntax
root = ctfroot

Description
root = ctfroot returns the name of the folder where the deployable archive for the
application is expanded.

Use this function to access any file that the user would have included in their project
(excluding the ones in the packaging folder).

Examples

Determine location of deployable archive
appRoot = ctfroot;

Output Arguments
root — Path to expanded deployable archive
character vector

Path to expanded deployable archive returned as a character vector in the form:
application_name_mcr. .

Introduced in R2006a

 ctfroot

13-9

deploytool
Compile and package functions for external deployment

Syntax
deploytool
deploytool project_name
deploytool -build project_name
deploytool -package project_name

Description
deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project
preloaded.

deploytool -build project_name runs the appropriate compiler app to build the
specified project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

13 Functions

13-10

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

deploytool -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of the project to be compiled, specified as a character array or string.The project
must be on the current path.

Introduced in R2006b

 deploytool

13-11

figToImStream
Stream figure as byte array encoded in specified format

Syntax
output = figToImStream
output = figToImStream (Name,Value)

Description
output = figToImStream creates a signed byte array with the PNG data for the
current figure. The size and position of the printed output depends on the figure's
PaperPosition[mode] properties.

output = figToImStream (Name,Value) creates a byte array with the image data
for the specified figure. You can specify the encoding format for the image and if the byte
array is signed or unsigned. The size and position of the printed output depends on the
figure's PaperPosition[mode] properties.

Examples
Convert current figure to a signed PNG formatted byte array
surf(peaks)
bytes = figToImStream

Convert a specific figure to a bitmap stored in an unsigned
byte array
f = figure;
surf(peaks);
bytes = figToImStream('figHandle',f,...
 'imageFormat','bmp',...
 'outputType','uint8');

13 Functions

13-12

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'figHandle', f, 'imageFormat', 'bmp', 'outputType', 'uint8'
specifies the figure f is streamed into an unsigned byte array as a bitmap.

figHandle — Figure to stream
empty character array or string (default) | figure handle

Figure to stream, specified as the comma-separated pair consisting of 'figHandle' and
a figure handle.

imageFormat — Encoding format
png (default) | jpg | bmp | gif

Encoding format, specified as the comma-separated pair consisting of 'imageFormat'
and one of these values:

• png — encode the image using the Portable Network Graphics (PNG) format
• jpg — encode the image using the JPEG format
• bmp — encode the image as a bitmap
• gif — encode the image using the Graphics Interchange Format (GIF)

outputType — Type of bytes to store the image stream
int8 (default) | uint8

Type of bytes to store the image stream, specified as the comma-separated pair consisting
of 'outputType' and one of these values:

• int8 — use a signed byte array
• uint8 — use an unsigned byte array

 figToImStream

13-13

Output Arguments
output — Encoded figure data
byte array

Encoded figure data returned as a byte array.

Introduced in R2009b

13 Functions

13-14

getmcruserdata
Retrieve MATLAB array value associated with a given key

Syntax
value = getmcruserdata(key)

Description
value = getmcruserdata(key) returns MATLAB data associated with the string key
in the current MATLAB Runtime instance. If there is no data associated with the key, it
returns an empty matrix.

This function is part of the MATLAB Runtime User Data interface API. It is available both
in MATLAB and in deployed applications created with MATLAB Compiler and MATLAB
Compiler SDK.

Examples
Get the magic square data associated with the string 'magic' in the current instance of
the MATLAB Runtime.

value = magic(3);
setmcruserdata('magic', value);
getmcruserdata('magic')

ans =
 8 1 6
 3 5 7
 4 9 2

 getmcruserdata

13-15

Input Arguments
key — Key associated with MATLAB data
string

key is the MATLAB string with which MATLAB data value is associated within the
current instance of the MATLAB Runtime.

Output Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

value is the MATLAB data associated with input string key for the current instance of
the MATLAB Runtime.

See Also
setmcruserdata

Introduced in R2008b

13 Functions

13-16

isdeployed
Determine whether code is running in deployed or MATLAB mode

Syntax
x = isdeployed

Description
x = isdeployed returns true (1) when the function is running in deployed mode and
false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the application, the function will
return true when the application is run in deployed mode. If you run the application
containing this function in a MATLAB session, the function will return false.

Introduced before R2006a

 isdeployed

13-17

ismcc
Test if code is running during compilation process (using mcc)

Syntax
x = ismcc

Description
x = ismcc returns true when the function is being executed by mcc dependency checker
and false otherwise.

When this function is executed by the compilation process started by mcc, it will return
true. This function will return false when executed within MATLAB as well as in deployed
mode. To test for deployed mode execution, use isdeployed. This function should be
used to guard code in matlabrc, or hgrc (or any function called within them, for
example startup.m in the example on this page), from being executed by MATLAB
Compiler (mcc) or MATLAB Compiler SDK.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be
guarded from executing using ismcc during the compilation process and isdeployed
for the deployed application as shown in the example on this page.

Examples
`% startup.m
 if ~(ismcc || isdeployed)
 addpath(fullfile(matlabroot,'work'));
 end

See Also
isdeployed | mcc

13 Functions

13-18

libraryCompiler
Build and package functions for use in external applications

Syntax
libraryCompiler
libraryCompiler project_name
libraryCompiler -build project_name
libraryCompiler -package project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler
project

libraryCompiler project_name opens the Library Compiler app with the project
preloaded.

libraryCompiler -build project_name runs the Library Compiler app to build the
specified project. The installer is not generated.

libraryCompiler -package project_name runs the Library Compiler app to build
and package the specified project. The installer is generated.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

 libraryCompiler

13-19

Package a Function using an Existing Project

Open the Library Compiler app using an existing project.

libraryCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2013b

13 Functions

13-20

mbuild
Compile and link source files against MATLAB generated shared libraries

Syntax
mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
 [objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]

Description
mbuild compiles and links customer written C or C++ code against MATLAB generated
shared libraries.

Some of these options (-f, -g, and -v) are available on the mcc command line and are
passed along to mbuild. Others can be passed along using the -M option to mcc. For
details on the -M option, see the mcc reference page.

Supported Source File Types
Supported types of source files are:

• .c
• .cpp

Arguments to mbuild that are not options and do not belong to one of the supported
source file types are assumed to be library names, and are passed to the linker.

Options
This table lists the set of mbuild options. If no platform is listed, the option is available
on both UNIX and Windows.

 mbuild

13-21

Option Description
@<rspfile> (Windows only) Include the contents of the text file

<rspfile> as command line arguments to mbuild.
-c Compile only. Creates an object file only.
-D<name> Define a symbol name to the C preprocessor. Equivalent to a

#define <name> directive in the source.
-D<name>=<value> Define a symbol name and value to the C preprocessor.

Equivalent to a #define <name> <value> directive in the
source.

-f <optionsfile> Specify location and name of options file to use. Overrides
the mbuild default options file search mechanism.

-g Create an executable containing additional symbolic
information for use in debugging. This option disables the
mbuild default behavior of optimizing built object code
(see the -O option).

-h[elp] Print help for mbuild.
-I<pathname> Add <pathname> to the list of folders to search for

#include files.
-l<name> Link with object library. On Windows systems, <name>

expands to <name>.lib or lib<name>.lib and on UNIX
systems, to lib<name>.so or lib<name>.dylib. Do not
add a space after this switch.

Note When linking with a library, it is essential that you
first specify the path (with -I<pathname>, for example).

-L<folder> Add <folder> to the list of folders to search for libraries
specified with the -l option. On UNIX systems, you must
also set the run-time library paths. Do not add a space after
this switch.

-n No execute mode. Print out any commands that mbuild
would otherwise have executed, but do not actually execute
any of them.

13 Functions

13-22

Option Description
-O Optimize the object code. Optimization is enabled by default

and by including this option on the command line. If the -g
option appears without the -O option, optimization is
disabled.

-outdir <dirname> Place all output files in folder <dirname>.
-output <resultname> Create an executable named <resultname>. An

appropriate executable extension is automatically
appended. Overrides the mbuild default executable naming
mechanism.

-setup Interactively specify the C/C++ compiler options file to use
as the default for future invocations of mbuild by placing it
in the user profile folder (returned by the prefdir
command). When this option is specified, no other command
line input is accepted.

-setup -client
mbuild_com

Interactively specify the COM compiler options file to use as
the default for future invocations of mbuild by placing it in
the user profile folder (returned by the prefdir command).
When this option is specified, no other command line input
is accepted.

-U<name> Remove any initial definition of the C preprocessor symbol
<name>. (Inverse of the -D option.)

-v Verbose mode. Print the values for important internal
variables after the options file is processed and all
command line arguments are considered. Prints each
compile step and final link step fully evaluated.

 mbuild

13-23

Option Description
<name>=<value> Supplement or override an options file variable for variable

<name>. This option is processed after the options file is
processed and all command line arguments are considered.
You may need to use the shell's quoting syntax to protect
characters such as spaces that have a meaning in the shell
syntax. On Windows double quotes are used (e.g.,
COMPFLAGS="opt1 opt2"), and on UNIX single quotes are
used (e.g., CFLAGS='opt1 opt2').

It is common to use this option to supplement a variable
already defined. To do this, refer to the variable by
prepending a $ (e.g., COMPFLAGS="$COMPFLAGS opt2" on
Windows or CFLAGS='$CFLAGS opt2' on UNIX shell).

For the MinGW-w64 compiler, which is based on gcc/g++,
use single quotes (').

Examples
To change the default C/C++ compiler for use with MATLAB Compiler SDK, use

mbuild -setup

To compile and link an external C program foo.c against libfoo, use

mbuild foo.c -L. -lfoo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both foo.c and the library generated above are in the current working
folder.

Introduced before R2006a

13 Functions

13-24

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -l options mfilename1 mfilename2...mfilenameN
mcc -c options mfilename1 mfilename2...mfilenameN
mcc -W cpplib:library_name[,{all|legacy|generic}] options mfilename1
mfilename2...mfilenameN

mcc -W com:component_name,className -T link:lib options
class{className:mfilename1 mfilename2...mfilenameN}

mcc -W
dotnet:assembly_name,className,framework_version,security,remote_typ
e -T link:lib options mfilename1 mfilename2...mfilenameN
mcc -W
dotnet:assembly_name,className,framework_version,security,remote_typ
e -T link:lib options class{className:mfilename1
mfilename2...mfilenameN}

mcc -W java:packageName,className options mfilename1
mfilename2...mfilenameN
mcc -W java:packageName,className options class{className:mfilename1
mfilename2...mfilenameN}

mcc -W python:namespace.packageName -T link:lib options mfilename1
mfilename2...mfilenameN

mcc -W CTF:archive_name -U options mfilename1
mfilename2...mfilenameN

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN

 mcc

13-25

Description
mcc options mfilename1 mfilename2...mfilenameN compiles the functions as
specified by the options.

The options used depend on the intended results of the compilation. For information on
compiling:

• standalone applications, Excel add-ins, or Hadoop® jobs see mcc for MATLAB Compiler

mcc -l options mfilename1 mfilename2...mfilenameN compiles the listed
functions into a C shared library and generates C wrapper code for integration with other
applications.

This syntax is equivalent to -W lib:libname -T link:lib.

mcc -c options mfilename1 mfilename2...mfilenameN generates C wrapper
code for the listed functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:library_name[,{all|legacy|generic}] options mfilename1
mfilename2...mfilenameN compiles the listed functions into a C++ shared library and
generates C++ wrapper code for integration with other applications.

• library_name — Specifies the name of the shared library.
• all— Generates shared libraries using both the mwArray API and the generic

interface that uses the MATLAB Data API. This is the default.
• legacy— Generates shared libraries using the mwArrayAPI.
• generic— Generates shared libraries using the MATLAB Data API.

mcc -W com:component_name,className -T link:lib options
class{className:mfilename1 mfilename2...mfilenameN} compiles the listed
functions into a generic Microsoft COM component.

• component_name — Specifies the name of the COM component.

• className — Specifies the name of the class.

mcc -W
dotnet:assembly_name,className,framework_version,security,remote_typ

13 Functions

13-26

e -T link:lib options mfilename1 mfilename2...mfilenameN creates a .NET
assembly with a single class from the specified files.

• assembly_name — Specifies the name of the assembly preceded by its namespace,
which is a period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the .NET class to be created.
• framework_version — Specifies the version of the Microsoft .NET Framework you

want to use to compile the assembly. Specify either:

• 0.0 — Use the latest supported version on the target machine.
• version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

• security — Specifies whether the assembly to be created is a private assembly or a
shared assembly.

• To create a private assembly, specify Private.
• To create a shared assembly, specify the full path to the encryption key file used to

sign the assembly.
• remote_type — Specifies the remoting type of the assembly. Values are remote and

local.

mcc -W
dotnet:assembly_name,className,framework_version,security,remote_typ
e -T link:lib options class{className:mfilename1
mfilename2...mfilenameN} creates a .NET assembly with multiple classes from the
specified files.

• assembly_name — Specifies the name of the assembly and its namespace, which is a
period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the .NET class to be created.

Note You can include multiple class specifiers.
• framework_version — Specifies the version of the Microsoft .NET Framework you

want to use to compile the assembly. Specify either:

• 0.0 — Use the latest supported version on the target machine.

 mcc

13-27

• version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

• security — Specifies whether the assembly to be created is a private assembly or a
shared assembly.

• To create a private assembly, specify Private.
• To create a shared assembly, specify the full path to the encryption key file used to

sign the assembly.
• remote_type — Specifies the remoting type of the assembly. Values are remote and

local.

mcc -W java:packageName,className options mfilename1
mfilename2...mfilenameN creates a Java package from the specified files.

• packageName — Specifies the name of the Java package and its namespace, which is
a period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the last item in packageName.

mcc -W java:packageName,className options class{className:mfilename1
mfilename2...mfilenameN} creates a Java package with multiple classes from the
specified files.

• packageName — Specifies the name of the Java package and its namespace, which is
a period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the last item in packageName.

Note You can include multiple class specifiers.

mcc -W python:namespace.packageName -T link:lib options mfilename1
mfilename2...mfilenameN creates a Python package from the specified files.

• namespace — Specifies the optional namespace for the package, which is a period-
separated list, such as companyname.groupname.component

• packageName — Specifies the name of the Python package.

13 Functions

13-28

mcc -W CTF:archive_name -U options mfilename1
mfilename2...mfilenameN instructs the compiler to create a deployable archive (.ctf
file) for use with a MATLAB Production Server instance.

The syntax also creates the server-side deployable archive (.ctf file) for Microsoft Excel
add-ins.

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN creates a client-side Microsoft Excel add-in from the
specified files that can be used to send requests to MATLAB Production Server from
Excel. Creating the client-side add-in must be preceded by creating a server-side
deployable archive (.ctf file) from the specified files. A purely client side add-in is not
viable.

• addin_name — Specifies the name of the add-in and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

• input_marshaling_flags — Specifies options for how data is marshaled between
Microsoft Excel and MATLAB.

• -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled
into NaN in MATLAB. If you do not specify this flag, blanks are marshaled into 0.

• -convertDateToString — Specifies that dates in Microsoft Excel are marshaled
into MATLAB character vectors. If you do not specify this flag, dates are marshaled
into MATLAB doubles.

• output_marshaling_flags — Specifies options for how data is marshaled between
MATLAB and Microsoft Excel.

• -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0 in
Microsoft Excel. If you do not specify this flag, NaN is marshalled into #QNAN in
Visual Basic®.

 mcc

13-29

• -convertNumericToDate — Specifies that MATLAB numeric values are
marshaled into Microsoft Excel dates. If you do not specify this flag, Microsoft
Excel does not receive dates as output.

Examples

Compile a C++ shared library
Use the mwArray API

mcc -W 'cpplib:mymagic,legacy' mymagic.m

Use the MATLAB Data API

mcc -W 'cpplib:mymagic,generic' mymagic.m

Use both the mwArray API and the MATLAB Data API

mcc -W 'cpplib:mymagic,all' mymagic.m

OR

mcc -W 'cpplib:mymagic' mymagic.m

Compile a Java package containing multiple classes
mcc -W 'java:myMatrix,add' class{add:add.m} class{sub:minus.m}

Compile a Python package
mcc -W python:myMagic -T link:lib magic.m

Input Arguments
mfilename1 mfilename2...mfilenameN — Files to be compiled
list of filenames

One or more files to be compiled, specified as a space-separated list of filenames.

13 Functions

13-30

options — Options for customizing the output
-a | -b | -B | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -R | -S | -T | -u | -U | -v | -w |
-W | -Y

Options for customizing the output, specified as a list of character vectors or string
scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added.
Multiple -a options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB
path, so specifying the full path name is optional. These files are not passed to
mbuild, so you can include files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the
deployable archive. The folder subtree in testdir is preserved in the deployable
archive.

If the filename includes a wildcard pattern, only the files in the folder that match the
pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

 mcc

13-31

When you add files to the archive using -a that do not appear on the MATLAB path at
the time of compilation, a path entry is added to the application's run-time path so that
they appear on the path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is
preserved, with some modifications, but relative to a subdirectory of the runtime
cache directory, not to the user's local folder. The cache directory is created from the
deployable archive the first time the application is executed. You can use the
isdeployed function to determine whether the application is being run in deployed
mode, and adjust the path accordingly. The -a option also creates a .auth file for
authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the
folder containing the file is added to the MATLAB dependency analysis path. As a
result, other files from that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications
work without any need to change the classpath as long as the Java class is not a
member of a package. The same applies for JAR files. However, if the class being
added is a member of a package, the MATLAB code needs to make an appropriate call
to javaaddpath to update the classpath with the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell
formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and
corresponding arguments and/or other file names. The file might contain other -B
options. A bundle can include replacement parameters for compiler options that
accept names and version numbers. See “Using Bundles to Build MATLAB Code” on
page 10-5.

13 Functions

13-32

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.
• -f

Override the default options file with the specified options file. It specifically applies to
the C/C++ shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use
different ANSI compilers for different invocations of the compiler. This option is a
direct pass-through to mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler SDK. It also causes mbuild to pass appropriate debugging flags to the
system C/C++ compiler. The debug option lets you backtrace up to the point where
you can identify if the failure occurred in the initialization of MATLAB Runtime, the
function call, or the termination routine. This option does not let you debug your
MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the
folder to the end of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files,
followed by directory2. This option is important for standalone compilation where
the MATLAB path is not available.

 mcc

13-33

If used in conjunction with the -N option, the -I option adds the folder to the
compilation path in the same position where it appeared in the MATLAB path rather
than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for
defining compile-time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.
• -n

The -n option automatically identifies numeric command line inputs and treats them
as MATLAB doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is
subject to change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at
compile time. Including -N on the command line lets you replace folders from the
original path, while retaining the relative ordering of the included folders. All

13 Functions

13-34

subfolders of the included folders that appear on the original path are also included. In
addition, the -N option retains all folders that you included on the path that are not
under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is
placed at the head of the compilation path. Use the –p option to conditionally include
folders and their subfolders; if they are present in the MATLAB path, they appear in
the compilation path in the same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-
dependent extension is added to the specified name (for example, .exe for Windows
standalone applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under
matlabroot\toolbox to the compilation MATLAB path. The files are added in the
same order in which they appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path,
it is assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and
all its subfolders that appear on the original path are added to the compilation path
in the same order.

• If a folder is included with -p that is not on the original MATLAB path, that folder
is ignored. (You can use -I to force its inclusion.)

• -R

Provide MATLAB Runtime options. This option is relevant only when building
standalone applications using MATLAB Compiler. The syntax is as follows:

-R option

 mcc

13-35

Option Description Target
-
logfile
,filena
me

Specify a log file name. MATLAB Compiler

-
nodispl
ay

Suppress the MATLAB nodisplay run-
time warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine
(JVM).

MATLAB Compiler

-
startms
g

Customizable user message displayed at
initialization time.

MATLAB Compiler
Standalone Applications

-
complet
emsg

Customizable user message displayed
when initialization is complete.

MATLAB Compiler
Standalone Applications

Caution When running on Mac OS X, if you use -nodisplay as one of the options
included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK,
mcc still compiles without errors and generates the results. But the -R option doesn't
apply to these libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets
its own MATLAB Runtime context. The context includes a global MATLAB workspace
for variables, such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context.
This ensures that changes made to the global or base workspace in one instance of the
class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple
instances of a class are created, they use the context created by the first instance
which saves startup time and some resources. However, any changes made to the

13 Functions

13-36

global workspace or the base workspace by one instance impacts all class instances.
For example, if instance1 creates a global variable A in a singleton MATLAB
Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these
specific targets:

Target supported by Singleton MATLAB
Runtime

Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

.NET assembly Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

COM component • Using the Library Compiler app, click
Settings and add -S to the Additional
parameters passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description
compile:exe Generate a C/C++ wrapper file, and

compile C/C++ files to an object form
suitable for linking into a standalone
application.

compile:lib Generate a C/C++ wrapper file, and
compile C/C++ files to an object form
suitable for linking into a shared library
or DLL.

link:exe Same as compile:exe and also link
object files into a standalone
application.

 mcc

13-37

Target Description
link:lib Same as compile:lib and also link

object files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The
argument applies only to the generic COM component and Microsoft Excel add-in
targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List all of the possible warnings that mcc can

generate.
-w enable Enable all warnings.
-w disable[:<string>] Disable specific warnings associated with

<string>. Omit the optional <string> to apply
the disable action to all warnings.

13 Functions

13-38

Syntax Description
-w enable[:<string>] Enable specific warnings associated with

<string>. Omit the optional <string> to apply
the enable action to all warnings.

-w error[:<string>] Treat specific warnings associated with <string>
as an error. Omit the optional <string> to apply
the error action to all warnings.

-w off[:<string>]
[<filename>]

Turn off warnings for specific error messages
defined by <string>. You can also narrow the
scope by specifying warnings be turned off when
generated by specific <filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error messages
defined by <string>. You can also narrow scope
by specifying warnings be turned on when
generated by specific <filename>s.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using
isdeployed) in startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files
generated by the compiler. You provide a list of functions, and the compiler generates
the wrapper functions and any appropriate global variable definitions.

 mcc

13-39

• -Y Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

See Also
mbuild

Introduced before R2006a

13 Functions

13-40

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to
current platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).

If no MATLAB Runtime installer is found, you are prompted to download an installer using
the command compiler.runtime.download.

Note You must distribute the MATLAB Runtime library to your end users to enable them
to run applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure the MATLAB Runtime”for more information about the MATLAB
Runtime installer.

 mcrinstaller

13-41

Examples

Find MATLAB Runtime Installer Location
Display the location of MATLAB Runtime installers for a particular platform. This example
shows output for a win64 system. The release number is called R20xxx indicating the
release for which the MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Introduced in R2009a

13 Functions

13-42

mcrversion
Determine version of installed MATLAB Runtime

Syntax
[major, minor] = mcrversion;

Description
The MATLAB Runtime version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable: [major, minor] =
mcrversion; Major and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more
outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion
ans =
 7

Introduced in R2008a

 mcrversion

13-43

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name
productionServerCompiler -build project_name
productionServerCompiler -package project_name

Description
productionServerCompiler opens the Production Server Compiler app for the
creation of a new compiler project.

productionServerCompiler project_name opens the appropriate compiler app with
the project preloaded.

productionServerCompiler -build project_name runs the appropriate compiler
app to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the appropriate
compiler app to build and package the specified project. The installer is generated.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

13 Functions

13-44

Package a Deployable Archive using an Existing Project

Open the appropriate compiler app to package an existing project file.

productionServerCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2014a

 productionServerCompiler

13-45

setmcruserdata
Associate MATLAB data value with a key

Syntax
void setmcruserdata(key, value)

Description
void setmcruserdata(key, value) associates the MATLAB data value with the
string key in the current MATLAB Runtime instance. If there is already a value
associated with the key, it is overwritten.

This function is part of the MATLAB Runtime User Data interface API. It is available both
in MATLAB and in deployed applications created with MATLAB Compiler and MATLAB
Compiler SDK.

Examples
Store a cell array and associate it with the string 'PI_Data' in the current instance of
the MATLAB Runtime.

value = {3.14159, 'March 14th is PI day'};
setmcruserdata('PI_Data', value);

Input Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

Value is the MATLAB data associated with input string key for the current instance of
the MATLAB Runtime.

13 Functions

13-46

key — Key associated with MATLAB data
string

key is a MATLAB string with which MATLAB data value is associated within the current
instance of the MATLAB Runtime.

See Also
getmcruserdata

Introduced in R2008a

 setmcruserdata

13-47

Apps

14

Library Compiler
Package MATLAB programs for deployment as shared libraries and components

Description
The Library Compiler app packages MATLAB functions to include MATLAB functionality
in applications written in other languages.

Open the Library Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter libraryCompiler.

Examples
• “Create Excel Add-In from MATLAB” (MATLAB Compiler)
• “Create a C Shared Library with MATLAB Code”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
• “Generate a .NET Assembly and Build a .NET Application”
• “Create a Generic COM Component with MATLAB Code”
• “Generate a Java Package and Build a Java Application”
• “Generate a Python Package and Build a Python Application”

Parameters
type — type of library generated
C Shared Library | C++ Shared Library | Excel Add-in | Generic COM Component | Java
Package | .NET Assembly | Python Package

14 Apps

14-2

Type of library to generate.

exported functions — functions to package
list of character vectors

Functions to package as a list of character vectors.

packaging options — method for installing the MATLAB Runtime with the
compiled library
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether or not to include the MATLAB Runtime fallback for MATLAB
Runtime installer in the generated application by selecting one of the two options in the
Packaging Options section. Including the MATLAB Runtime installer in the package
significantly increases the size of the package.

Runtime downloaded from web — Generates an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime
installer.

The first time you select this option, you are prompted to download the MATLAB Runtime
installer or obtain a CD if you do not have internet access.

files required for your library to run — files that must be included with
library
list of files

Files that must be included with library as a list of files.

files installed for your end user — optional files installed with library
list of files

Optional files installed with library as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

 Library Compiler

14-3

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

end user files — folder where files for building a custom installer are stored
character vector

Folder where files for building a custom installer are stored are stored as a character
vector.

packaged installers — folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Library Information

library name — name of the installed library
character vector

Name of the installed library as a character vector.

The default value is the name of the first function listed in the Exported Functions field
of the app.

version — version of the generated library
character vector

Version of the generated library as a character vector.

splash screen — image displayed on installer
image

Image displayed on installer as an image.

author name — name of the library author
character vector

Name of the library author as a character vector.

e-mail — e-mail address used to contact library support
character vector

14 Apps

14-4

E-mail address used to contact library support as a character vector.

summary — brief description of library
character vector

Brief description of library as a character vector.

description — detailed description of library
character vector

Detailed description of library as a character vector.

Additional Installer Options

default installation folder — folder where artifacts are installed
character vector

Folder where artifacts are installed as a character vector.

installation notes — notes about additional requirements for using artifacts
character vector

Notes about additional requirements for using artifacts as a character vector.

Programmatic Use
libraryCompiler

See Also

Topics
“Create Excel Add-In from MATLAB” (MATLAB Compiler)
“Create a C Shared Library with MATLAB Code”
“Generate a C++ mwArray API Shared Library and Build a C++ Application”
“Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
“Generate a .NET Assembly and Build a .NET Application”
“Create a Generic COM Component with MATLAB Code”
“Generate a Java Package and Build a Java Application”

 Library Compiler

14-5

“Generate a Python Package and Build a Python Application”

14 Apps

14-6

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB
functions. It also packages MATLAB functions into archives for deployment to MATLAB
Production Server.

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a Deployable Archive for MATLAB Production Server” (MATLAB Production

Server)
• “Create and Install a Deployable Archive with Excel Integration For MATLAB

Production Server” (MATLAB Production Server)

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

 Production Server Compiler

14-7

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with
archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character
array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

14 Apps

14-8

Programmatic Use
productionServerCompiler

See Also

Topics
“Create a Deployable Archive for MATLAB Production Server” (MATLAB Production
Server)
“Create and Install a Deployable Archive with Excel Integration For MATLAB Production
Server” (MATLAB Production Server)

Introduced in R2013b

 Production Server Compiler

14-9

